Dr. Kenneth Liao and a team at Baylor St. Luke’s Medical Center used a surgical robot to implant a new heart in a 45-year-old male patient. Photo courtesy Baylor College of Medicine.

A team at Baylor St. Luke’s Medical Center, led by Dr. Kenneth Liao, successfully performed the first fully robotic heart transplant in the United States earlier this year, the Houston hospital recently shared.

Liao, a professor and chief of cardiothoracic transplantation and circulatory support at Baylor College of Medicine and chief of cardiothoracic transplantation and mechanical circulatory support at Baylor St. Luke’s Medical Center, used a surgical robot to implant a new heart in a 45-year-old male patient through preperitoneal space in the abdomen by making small incisions.

The robotic technology allowed the medical team to avoid opening the chest and breaking the breast bone, which reduces the risk of infection, blood transfusions and excessive bleeding. It also leads to an easier recovery, according to Liao.

"Opening the chest and spreading the breastbone can affect wound healing and delay rehabilitation and prolong the patient's recovery, especially in heart transplant patients who take immunosuppressants," Liao said in a news release. "With the robotic approach, we preserve the integrity of the chest wall, which reduces the risk of infection and helps with early mobility, respiratory function and overall recovery."

The patient received the heart transplant in March, after spending about four months in the hospital due to advanced heart failure. According to Baylor, he was discharged home after recovering from the surgery in the hospital for a month without complications.

"This transplant shows what is possible when innovation and surgical experience come together to improve patient care," Liao added in the release. "Our goal is to offer patients the safest, most effective and least invasive procedures, and robotic technology allows us to do that in extraordinary ways."

Baylor College of Medicine's Lillie and Roy Cullen Tower is set to open in 2026. Rendering courtesy of SLAM Architecture

Houston health care institution secures $100M for expansion, shares renderings

fresh funding

Baylor College of Medicine has collected $100 million toward its $150 million fundraising goal for the college’s planned Lillie and Roy Cullen Tower.

The $100 million in gifts include:

  • A total of $30 million from The Cullen Foundation, The Cullen Trust for Health Care, and The Cullen Trust for Higher Education.
  • $12 million from the DeBakey Medical Foundation
  • $10 million from the Huffington Foundation
  • More than $45 million from members of Baylor’s Board of Trustees and other community donors, including the M.D. Anderson Foundation, the Albert and Margaret Alkek Foundation, and The Elkins Foundation.

“The Cullen Trust for Health Care is very honored to support this building along with The Cullen Foundation and The Cullen Trust for Higher Education,” Cullen Geiselman Muse, chair of The Cullen Trust for Health Care, says in a news release. “We cannot wait to see what new beginnings will come from inside the Lillie and Roy Cullen Tower.”

Baylor College of Medicine's Lillie and Roy Cullen TowerThe Baylor campus is next to Texas Medical Center’s Helix Park, a 37-acre project. Rendering courtesy of BCM

The Lillie and Roy Cullen Tower is set to open in 2026. The 503,000-square-foot tower is the first phase of Baylor’s planned Health Sciences Park, an 800,000-square-foot project that will feature medical education and research adjacent to patient care at Baylor Medicine and Baylor St. Luke’s Medical Center on the McNair Campus.

The Baylor campus is next to Texas Medical Center’s Helix Park, a 37-acre project that will support healthcare, life sciences, and business ventures. Baylor is the anchor tenant in the first building being constructed at Helix Park.

“To really change the future of health, we need a space that facilitates the future,” says Dr. Paul Klotman, president, CEO, and executive dean of Baylor. “We need to have a great building to recruit great talent. Having a place where our clinical programs are located, where our data scientists are, next to a biotech development center, and having our medical students all integrated into that environment will allow them to be ready in the future for where healthcare is going.”

In the 1940s, Lillie and Roy Cullen and the M.D. Anderson Foundation were instrumental in establishing the Texas Medical Center, which is now the world’s largest medical complex.

“Baylor is the place it is today because of philanthropy,” Klotman says. “The Cullen family, the M.D. Anderson Foundation, and the Albert and Margaret Alkek Foundation have been some of Baylor’s most devoted champions, which has enabled Baylor to mold generations of exceptional health sciences professionals. It is fitting that history is repeating itself with support for this state-of-the-art education building.”

The Cullen Foundation donated $30 million to the project. Rendering courtesy of BCM

One of Houston's biggest medical office projects — the $1.3 billion, 400,000-square-foot O’Quinn Medical Tower — is expected to deliver this year. Photo courtesy of Baylor College of Medicine

Report: Houston to see highest concentration of medical office project completions this year

opening soon

Medical office and life sciences projects are making a big splash in Houston’s commercial real estate sector in 2023.

The 42Floors commercial real estate website ranks five Houston-area medical office buildings among the country’s 20 largest medical office projects set to open this year. Meanwhile, 42Floors identifies two Houston developments among the 20 biggest U.S. life sciences projects on tap to debut in 2023.

Leading the list of the largest U.S. medical office buildings scheduled to be completed this year is the $1.3 billion, 400,000-square-foot O’Quinn Medical Tower. Set to open April 14 at the McNair Campus of Baylor St. Luke’s Medical Center, the outpatient facility will adjoin the McNair Hospital Tower, which opened in 2019.

The O’Quinn tower will serve as the new clinical home of the Dan L Duncan Comprehensive Cancer Center. The center is a federally designated facility for cancer care and research.

Highlights of the 12-story O’Quinn tower, southeast of the Texas Medical Center, include:

  • Ambulatory surgery center with 12 operating rooms and 10 endoscopy suites
  • 80-bay setup for infusion therapy
  • More than 70 exam rooms
  • More than 850 parking spaces

In all, five medical office properties in the Houston area made the 42Floors list, representing the highest concentration of major projects in any U.S. metro area that are scheduled to open this year. The four medical office properties joining the O’Quinn tower on the list are:

  • Houston Methodist Sugar Land Medical Office Building 4, 159,252 square feet
  • Kelsey-Seybold Springwoods Village Campus, 157,983 square feet
  • Kelsey-Seybold Ambulatory Surgery Center in Clear Lake, 116,000 square feet
  • 1715 Project in Friendswood, 107,000 square feet

A separate 42Floors list ranks Dynamic One, part of Baylor College of Medicine’s TMC Helix Park, as the second largest life sciences project in the U.S. set to come online this year. Houston’s TMC3 Collaborative Building lands at No. 19.

The 12-story Dynamic One project will feature lab space, offices, restaurants, and stores. It represents the first of four buildings planned for the 37-acre, five-million-square-foot TMC Helix Park, which is projected to generate an economic impact of $5.4 billion.

The 42Floors list puts the square footage of Dynamic One’s north tower at 365,000. Organizations involved in the project cite the square footage as 355,000.

The Baylor College of Medicine has signed up as Dynamic One’s anchor tenant. It will occupy 114,000 square feet of lab and office space.

“Baylor College of Medicine is a major force in life sciences discovery and commercialization at TMC. Their move to TMC Helix Park will serve as a catalyst for enhanced collaboration with TMC’s other esteemed Institutions, as well as with industry leaders from around the world,” Bill McKeon, president and CEO of TMC, says in a news release.

Also located at TMC Helix Park, the four-story TMC3 Collaborative Building will span 250,000 square feet. It will contain research facilities for MD Anderson Cancer Center, the Texas A&M University Health Science Center, the University of Texas Health Science Center at Houston, and TMC.

In addition, the TMC3 Collaborative Building will house life sciences companies, the TMC Data Collaborative, the TMC Venture Fund, the Braidwell hedge fund, and venture capital and private equity firms.

The new tower will be home of the Dan L Duncan Comprehensive Cancer Center. Photo courtesy of Baylor College of Medicine

Pivotal new cancer research tower tops off in the Texas Medical Center

coming soon

Anew structure aimed at greatly expanding medical services and outpatient care to residents of Greater Houston recently topped off.

At an official ceremony attended by VIPs and industry names, Baylor St. Luke's Medical Center toasted the completion of the concrete structure pivotal in the construction of the O'Quinn Medical Tower at the McNair Campus.

This new 12-story O'Quinn Medical Tower at Baylor St. Luke's - McNair Campus will be the new clinical home for the Dan L Duncan Comprehensive Cancer Center, per a release. The center is nationally ranked for cancer care by U.S. News & World Report and is one of only three National Cancer Institute-designated comprehensive cancer centers in Texas. It earned that designation through Baylor College of Medicine.

Additionally, the O'Quinn Medical Tower is part of the expanding McNair Campus. This campus promises more than 400,000 square feet of space to support and provide personalized care to patients and families, including another hospital bed tower and ambulatory care center, press materials describe.

Those familiar with the area will recognize that the campus sits directly adjacent to the planned site of TMC3, a new 37-acre campus that will be located between Old Spanish Trail and Brays Bayou.

"The new O'Quinn Tower and its designation as the clinical home of Baylor's Dan L Duncan Comprehensive Cancer Center will be an important milestones in Baylor's mission," said Dr. Paul Klotman, president, CEO and executive dean of Baylor College of Medicine, in a release. "The McNair Campus is the hub of our clinical activity, and we look forward to the continued expansion."

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”

Axiom Space wins NASA contract for fifth private mission, lands $350M in financing

ready for takeoff

Editor's note: This story has been updated to include information about Axiom's recent funding.

Axiom Space, a Houston-based space infrastructure company that’s developing the first commercial space station, has forged a deal with NASA to carry out the fifth civilian-staffed mission to the International Space Station.

Axiom Mission 5 is scheduled to launch in January 2027, at the earliest, from NASA’s Kennedy Space Center in Florida. The crew of non-government astronauts is expected to spend up to 14 days docked at the International Space Station (ISS). Various science and research activities will take place during the mission.

The crew for the upcoming mission hasn’t been announced. Previous Axiom missions were commanded by retired NASA astronauts Michael López-Alegría, the company’s chief astronaut, and Peggy Whitson, the company’s vice president of human spaceflight.

“All four previous [Axiom] missions have expanded the global community of space explorers, diversifying scientific investigations in microgravity, and providing significant insight that is benefiting the development of our next-generation space station, Axiom Station,” Jonathan Cirtain, president and CEO of Axiom, said in a news release.

As part of Axiom’s new contract with NASA, Voyager Technologies will provide payload services for Axiom’s fifth mission. Voyager, a defense, national security, and space technology company, recently announced a four-year, $24.5 million contract with NASA’s Johnson Space Center in Houston to provide mission management services for the ISS.

Axiom also announced today, Feb. 12, that it has secured $350 million in a financing round led by Type One Ventures and Qatar Investment Authority.

The company shared in a news release that the funding will support the continued development of its commercial space station, known as Axiom Station, and the production of its Axiom Extravehicular Mobility Unit (AxEMU) under its NASA spacesuit contract.

NASA awarded Axiom a contract in January 2020 to create Axiom Station. The project is currently underway.

"Axiom Space isn’t just building hardware, it’s building the backbone of humanity’s next era in orbit," Tarek Waked, Founding General Partner at Type One Ventures, said in a news release. "Their rare combination of execution, government trust, and global partnerships positions them as the clear successor-architect for life after the ISS. This is how the United States continues to lead in space.”

Houston edtech company closes oversubscribed $3M seed round

fresh funding

Houston-based edtech company TrueLeap Inc. closed an oversubscribed seed round last month.

The $3.3 million round was led by Joe Swinbank Family Limited Partnership, a venture capital firm based in Houston. Gamper Ventures, another Houston firm, also participated with additional strategic partners.

TrueLeap reports that the funding will support the large-scale rollout of its "edge AI, integrated learning systems and last-mile broadband across underserved communities."

“The last mile is where most digital transformation efforts break down,” Sandip Bordoloi, CEO and president of TrueLeap, said in a news release. “TrueLeap was built to operate where bandwidth is limited, power is unreliable, and institutions need real systems—not pilots. This round allows us to scale infrastructure that actually works on the ground.”

True Leap works to address the digital divide in education through its AI-powered education, workforce systems and digital services that are designed for underserved and low-connectivity communities.

The company has created infrastructure in Africa, India and rural America. Just this week, it announced an agreement with the City of Kinshasa in the Democratic Republic of Congo to deploy a digital twin platform for its public education system that will allow provincial leaders to manage enrollment, staffing, infrastructure and performance with live data.

“What sets TrueLeap apart is their infrastructure mindset,” Joe Swinbank, General Partner at Joe Swinbank Family Limited Partnership, added in the news release. “They are building the physical and digital rails that allow entire ecosystems to function. The convergence of edge compute, connectivity, and services makes this a compelling global infrastructure opportunity.”

TrueLeap was founded by Bordoloi and Sunny Zhang and developed out of Born Global Ventures, a Houston venture studio focused on advancing immigrant-founded technology. It closed an oversubscribed pre-seed in 2024.