Baylor Genetics has paired with Baylor’s department of molecular and human genetics to launch the Medical Genetics Multiomics Laboratory with a goal for the collaboration is to turn research into clinical diagnostics. Photo via Getty Images

A new lab at Baylor College of Medicine is primed to do groundbreaking work in the field of genetics.

Baylor Genetics has paired with Baylor’s department of molecular and human genetics to launch the Medical Genetics Multiomics Laboratory (MGML). The goal for the collaboration is to turn research into clinical diagnostics.

MGML’s freshly launched first clinical test is Whole Transcriptomic RNA Sequencing (WT RNAseq). The new test builds upon the success of existing tests like whole exome sequencing (WES) and whole genome sequencing (WGS) currently on offer from Baylor Genetics by focusing on additional variants that could be missed by the other tests.

Baylor Genetics is offering WT RNAseq to the Undiagnosed Diseases Network (UDN) and its affiliated institutions. For more than a decade, the NIH-funded UDN has united clinical and research experts from across many fields and institutions to give answers to patients with rare genetic diseases. Since it became one of the first institutions to join the UDN in 2014, Baylor Genetics has been the UDN’s sequencing core, using WES, WGS and RNA sequencing to help diagnose patients. The additional offering of WT RNAseq could improve the diagnostic yield by as much as 17 percent.

“This agreement, and the MGML lab, bring to life our vision of innovation, allowing us to co-develop new tests, evaluate in terms of clinical utility, and offer commercially in either a research or clinical setting,” says Dr. Brendan Lee, professor, chair and Robert and Janice McNair Endowed Chair of Molecular and Human Genetics at Baylor College of Medicine, and scientific advisory and board of directors member at Baylor Genetics. “Baylor Genetics is turning around critical high-volume testing, but the challenge is also maintaining our innovative edge and our position as leaders in discovery and genomic health implementation. This agreement is a realization of the vision when Baylor Genetics was founded 10 years ago.”

The lab’s product offerings will continue to expand as it becomes commercially feasible to do so, and the new tests will be used both commercially and clinically.

Baylor Genetics combines the powers of Baylor College of Medicine, which has the NIH’s best-funded department of molecular and human genetics, and Japanese clinical diagnostic testing company H.U. Group Holdings.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

10 most-promising energy tech startups named at annual Houston event

top companies

Investors from around the world again identified the most-promising energy tech startups at the Rice Alliance for Technology and Entrepreneurship's annual event.

"The recognition that Houston is the epicenter of energy transition is growing. It's something we are championing as much as possible so that the world can know exactly what we're doing," Paul Cherukuri, chief innovation officer at Rice University says at the 21st annual Energy Tech Venture Forum.

The event took place during the inaugural Houston Energy and Climate Startup Week, and nearly 100 startups from 23 states and seven countries pitched investors Wednesday, September 11, and Thursday, September 12. At the conclusion of the event, the investors decided on 10 companies deemed "most promising" from the presentations.

This year's selected companies are:

  • Revterra, a Houston-based company innovating within kinetic battery technology to enable faster and cleaner electric vehicle charging.
  • From Austin, 360 Mining is a modular data center provider for the oil and gas producers.
  • New York company Andium is a centralized and optimized operations platform for large energy companies.
  • Elementium Materials, a local Katy-based company, created its battery technology that originated out of MIT.
  • Splight is a San Mateo, California-based technology platform that provides real-time operational data based on inverter-based resources assets.
  • Los Angeles-based Mitico, one of the Rice Alliance Clean Energy Accelerator's class 4 participants, provides services and equipment for carbon capture through its granulated metal carbonate sorption technology.
  • From Cambridge, Massachusetts, Osmoses is changing the way molecular gas separations are performed within the chemical, petrochemical, and energy industries.
  • Rice Alliance Clean Energy Accelerator class 4 participant CORROLYTICS, based in Houston, has a corrosion detection and monitoring technology. The company also won over the crowd and secured the People's Choice win too.
  • Ardent, based in New Castle, Delaware, has developed a membrane technology for point-source carbon capture.
  • New Haven, Connecticut-based Oxylus Energy produces an alternative fuel from converting CO2 into green methanol.

Last year, investors named its selection of most-promising companies at Rice.

"We have a responsibility as a city to lead energy transition," Cherukuri continues. "A lot of the investments we're making at Rice are going to change the world."

Scientists use Houston rainwater to explore origins of life on Earth

let it rain

A flask of Houston’s rain helped answer a long-running question about the origin of cellular life.

The solution is proposed by two University of Houston scientists, William A. Brookshire Department of Chemical Engineering (UH ChBE) former grad student Aman Agrawal (now a postdoctoral researcher at University of Chicago’s Pritzker School of Molecular Engineering) and Alamgir Karim, UH Dow Chair and Welch Foundation Professor of chemical and biomolecular engineering, and director of both the International Polymer & Soft Matter Center and the Materials Engineering Program at UH. They were joined by UChicago PME Dean Emeritus Matthew Tirrell and Nobel Prize-winning biologist Jack Szostak in an article published last week in Scientific Advances.

For two decades, scientists like Szostak have hypothesized that RNA fragments were the first components of life to form in the Earth’s primordial seas 3.8 million years ago. Although DNA is an essential component of cellular life, it can’t fold proteins, making it unlikely to be the initial starting point. Since RNA can fold proteins, it could have been the catalyst for cellular growth and evolution.

The problem is that seawater molecules allow RNA to bond and change too quickly, often within minutes. Rapid dissipation means no segregation of material, and thus no evolution. Szostak himself proved in 2014 that regular seawater doesn’t allow RNA fragments to form the membranes necessary for cellular life.

Then along comes Agrawal. He wasn’t looking into the origin of life. He was an engineer studying the properties of complex liquids for his doctorate. Karim was his thesis adviser and introduced Agrawal to Tirrell, who brought up the RNA problem over a lunch and some theories about how if the water was distilled it may have solved it. Where would you get distilled water 3.8 billion years ago?

“I spontaneously said ‘rainwater,’” says Karim. “His eyes lit up and he was very excited at the suggestion. So, you can say it was a spontaneous combustion of ideas or ideation.”

Using RNA samples from Szostak, they saw that distilled water increased the differences in exchange rate between samples from minutes to days, long enough for the RNA to begin mutation.

Distilled lab water is nothing like prehistoric rain, though. Luckily, a typical Houston downpour occurred during the research. Agrawal and fellow UH graduate student, Anusha Vonteddu ran outside with beakers to collect some. The samples again formed meshy walls, separating the RNA and possibly showing how life began from these fragments billions of years ago.

“The molecules we used to build these protocells are just models until more suitable molecules can be found as substitutes,” Agrawal said. “While the chemistry would be a little bit different, the physics will remain the same.”

------

This article originally ran on CultureMap.