Halliburton has named its latest cohort. Photo via Getty Images

Seven companies from around the world have been invited to join Halliburton Labs, the company announced today.

Halliburton Labs is an incubator program that helps early-stage energy tech companies through connections, access to facilities, and more.

"We are pleased to welcome these promising energy startups and provide customized support to help them achieve their specific priorities, accelerate commercialization, and increase valuation," says Dale Winger, managing director of the program, in a news release. "Our experienced practitioners and network will help these companies use their time and capital efficiently."

The next Halliburton Labs Finalists Pitch Day, which will feature the ongoing cohort, is planned for Thursday, March 14, in New Orleans in coordination with New Orleans Entrepreneur Week and 3rd Coast Venture Summit. Applications for the program are open until Friday, February 9.

The newest additions to Halliburton Labs are as follows.

One of three Israel-based companies in the cohort, Airovation Technologies is advancing carbon capture and utilization solutions through helping hard-to-abate industries that achieve emissions reduction targets through its proprietary carbon mineralization technology. Through transforming point-source CO2 emissions into circular chemicals and building materials, Airovation is developing a scalable pathway for industrial emitters to decarbonize with multiple revenue streams.

“Industrial emitters are seeking economic ways to decarbonize,” Marat Maayan, founder and CEO at Airovation Technologies, says. “We are excited to accelerate our commercialization in the United States with Halliburton Labs, leveraging their expertise, capabilities and network."

Ayrton Energy, based in Calgary, is developing liquid organic hydrogen carrier storage technology to enable the large-scale, efficient transportation of hydrogen over extended distances without hydrogen loss and pipeline corrosion. This storage technology provides a high-density hydrogen storage medium without the need for cryogenics or high-pressure systems, which differs from the existing technology out there. This improves the safety and efficiency of hydrogen storage while enabling the use of existing fuel infrastructure for transportation, including tanks, transport trucks, and pipelines.

“Our mission is to enable hydrogen adoption by solving the key challenges in hydrogen storage and transportation,” Ayrton CEO Natasha Kostenuk says.

Cache Energy, based out of the University of Illinois Research Park, is developing a new long duration energy storage solution, which scales to interseasonal durations, through a low-cost solid fuel. Once charged, the storage material stores energy at room temperature, with near zero loss in time and can be safely stored and transported anywhere energy is needed.

“We are strong believers of leveraging existing infrastructure and expertise to fast track decarbonization goals,” Arpit Dwivedi, founder and, says CEO of Cache Energy. “We look forward to this collaboration and learning from Halliburton's manufacturing and operational expertise, as we scale our technology.”

From Be'er Sheva City in Israel, CENS develops enhanced dry dispersion technology based on dry-treated carbon nanotubes that enable high energy density, high power, and outstanding cycle performance in Li-ion batteries. The technology is differentiated because it can be applied to any type of lithim-ion battery and its implementation can be seamlessly integrated into the production line.

“Our goal is to develop ground-breaking technologies that will become disruptive technologies to market at a massive scale,” says CEO Moshe Johary. “With the help and vast experience of Halliburton Labs' team, we could achieve advancements in production capabilities while extending our footprint in the market.”

Casper, Wyoming-based Disa Technologiesprovides solutions to the mining and remediation industries. Disa utilizes patented minerals liberation technology to more efficiently isolate target minerals and mitigate environmental impacts to its users. Disa platforms treat a wide array of critical minerals that are essential to the economy and our way of life.

“We are excited to have Halliburton's support as we scale-up our technology and deliver innovative minerals processing solutions that disrupt industry best practices, enhance global resource utilization, and benefit the environment and the communities we serve," Greyson Buckingham, Disa's CEO and president, says.

Marel Power Solutions, headquartered from Michigan, is innovating electrification through its novel powerstack technology. These materials-efficient, quickly deployable, and scalable power-stacks, encapsulating advanced cooling technology, redefine power conversion in mobility, industrial, and renewables spaces.

“We're thrilled to contribute to global climate sustainability. Our collaboration with Halliburton will accelerate the electrification transition across industries. Marel's technology not only maximizes heat evacuation from densely packed power semiconductors but, more importantly, offers substantial savings in cost, weight, size, and time, making it transformative in the evolving landscape of electrification,” Marel CEO Amrit Vivekanand says.

And lastly, XtraLit is an Israeli company that develops a technology for direct lithium extraction from brines. The technology enables efficient and economically justified processing of brines even with relatively low lithium concentrations. Application of the extraction technology will allow mineral providers to unlock new significant sources of lithium that are critical to meet growing demand.

“Oil and gas industry produced waters might become a substantial resource for lithium production,” says XtraLit CEO, Simon Litsyn. “XtraLit will cooperate with Halliburton on optimization of produced water treatment for further increasing the efficiency of the lithium extraction process.”

------

This article originally ran on EnergyCapital.

Here's what energy transition companies stood out to Rice Alliance's experts. Photo via Rice Alliance

10 startups named most-promising in energy tech at Houston conference

rising stars

At the 20th annual Energy Tech Venture Forum presented by Rice Alliance for technology and Entrepreneurship, 11 startups scored recognition from the event's investors who evaluated over 90 early-stage energy transition companies.

"The selection process was both exhilarating and challenging given the incredible ideas we've seen today," says Jason Sidhu, director of information services business engagement at TC Energy, who announced the top companies. "I want to extend my gratitude to every company that participate din this year's Energy Tech Venture Forum. Your commitment to solving energy problems and pursuing ambitions ideas is truly commendable."

In addition to the top 10 most-promising companies, the event's attendees decided the people's choice pick out of the 50 or so pitching companies. The winner of that recognition was Calgary, Alberta-based Galatea Technologies, which has created a tech platform to enhance workflows for operational, financial, and environmental performance.

The top companies, according to the Rice Alliance experts and investors, were:

  • Circular economy startup, Polystyvert. Based in Montreal, the company has created a unique dissolution recycling process that creates a material that can contribute to cutting carbon emissions by up to 90 percent.
  • United Kingdom-based Mirico provides a tracking technology to its customers to measure climate gases (like methane, carbon dioxide, nitrous oxide, and ammonia), across areas up to half a square mile and in all conditions.
  • Protein Evolution, from New Haven, Connecticut, taps into a combination of green chemistry and enzyme technology to break down synthetic polymers.
  • Another Canadian company, Ayrton Energy, based in Calgary, created a liquid organic H2 carrier (LOHC) storage technology presents an opportunity for large, scalable and efficient transport of H2 over long distances.
  • Also representing New Haven, Connecticut, Carbon Loop is on a mission to make carbon capture and conversion scalable through carbon dioxide electrolysis using a proprietary catalyst to convert captured carbon dioxide into methanol.d
  • Based in London, Mobilus Labs has designed a new way for frontline communication with an in-helmet hardware and software solution. software solution designed for the frontline workforce.
  • 1s1 Energy, based in California, is working on producing low-cost green hydrogen by creating new materials to unlock unprecedented electrolyzer efficiency, durability, and more.
  • From Skokie, Illinois, Numat is specializing in solutions within Metal-organic framework (MOF) research to enhance the process of separating the hazardous chemicals negatively impacting human health and the environment.
  • Mantel, headquartered in Cambridge, Massachusetts, created a molten borate technology to capture CO2 in a new and efficient way.
  • The lone Houston-based company, Mars Materials is working to produce acrylonitrile using CO2 and biomass to enable decarbonization applications in carbon fiber and wastewater treatment.
------

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston co. unveils Prada-designed spacesuit to be used on the moon

from catwalk to moonwalk

Fashion met the future this week as Houston-based Axiom Space and the Prada apparel brand revealed the design of the spacesuit that NASA astronauts will wear during their upcoming journey to the moon.

Axiom, a space exploration company, and Prada, a fixture in the world of luxury fashion, debuted their design of the Axiom Extravehicular Mobility Unit (AxEMU) spacesuit at the International Astronautical Congress in Milan, Italy.

Set for 2026, NASA’s Artemis III mission will be the first “staffed” lunar landing since Apollo 17 in 1972. Four astronauts have been selected for the 30-day mission.

Components of the white, gray, and red spacesuit include:

  • Lights
  • HD camera
  • Cellular communications
  • “Endurance athlete”-style nutrition
  • Backpack with portable life support system
  • Custom-made gloves
  • Boots designed to withstand lunar temperatures and rough terrain

The spacesuit work is being performed under a nearly $1.3 billion NASA contract. Photo courtesy of Axiom Space

Axiom says the suit, which fits men and women, will enable astronauts to perform a spacewalk for at least eight hours. It’s geared toward lunar missions and low-earth-orbit missions.

“The AxEMU has significant advancements in safety, mobility, sizing, and performance,” the company says.

During development of the suit, Axiom placed a dark cover on the outer layer to conceal the suit’s proprietary technology. However, the suits worn on the lunar surface will be made from a white material that reflects heat, and protects astronauts from extreme high temperatures and lunar dust.

The spacesuit work is being performed under a nearly $1.3 billion NASA contract.

“Going beyond our limits is one of the company’s values that perfectly reflects the spirit of the Prada brand and my parents’ vision. I’m very proud of the result we’re showing today, which is just the first step in a long-term collaboration with Axiom Space,” Lorenzo Bertelli, Prada’s chief marketing officer and head of corporate social responsibility, says in a news release.

Axiom says the suit is near the final stage of development. Already, it has gone through testing by astronauts and engineers at Axiom, NASA, and SpaceX facilities. Among the tests were reduced-gravity simulations at NASA’s Johnson Space Center in Houston and underwater simulations at NASA’s Neutral Buoyancy Laboratory, also in Houston.

The suit will undergo an in-depth design review in 2025.

Houston college system provides support, resources for local entrepreneurs

hou made

Launching and growing small businesses and startups can take a village, and Houston Community College has a program that can help be that village for entrepreneurs.

HCC's HOU Made, which launched in 2021 and is run from HCC's West Houston Institute, is a free initiative that provides programming — workshops, resources and networking — to local businesses.

"It is designed to open up HCC's Makerspace to the public with access to tools and resources that were previously reserved for staff, faculty and students,” Connie Leon, the program’s coordinator, says in a news release. “The initiative gives small business owners access to use the Makerspace after their representatives attend a series of workshops.”

In addition to the workshops, which range from business 101 and branding to scaling operations, participants have access to equipment like laser cutters, 3D printers and heat press machines. One program within HOU Made is the Maker to Market initiative that provides entrepreneurs with materials including tents, tables, and marketing collateral to help set up pop-up stores for markets.

The program also provides opportunities with key financial advisers and partners like Chase Bank. LaShan Arceneaux, owner of Three Lumps of Sugar that creates mixes for cocktails, secured a $12,000 startup loan from participating in the program.

"I plan to use the loan to have a website built, and to purchase equipment and business supplies such as mixers, aprons, and supplies needed for business. This will allow me to grow the business successfully," Arceneaux says in the news release.

HVAC innovation has a huge role to play in Houston amid energy transition

guest column

As Houston, the energy capital of the world, navigates the global energy transition, the city is uniquely positioned to lead by example. This transition isn’t just about shifting from fossil fuels to renewable energy; it’s about creating an ecosystem where corporations, research institutions, startups, and investors collaborate to develop and implement innovative technologies.

One of the most promising areas for reducing energy consumption and minimizing environmental impact is in heating, ventilation, and air conditioning, or HVAC, systems.

Houston’s intense weather patterns demand efficient and adaptable climate control solutions. Traditional HVAC systems, while effective in maintaining indoor comfort, often operate on fixed settings that don’t account for real-time changes in occupancy or weather. This results in energy waste and increased utility costs — issues that can be mitigated by integrating artificial intelligence into HVAC systems.

AI-driven HVAC systems offer a dynamic approach to heating and cooling, learning from user preferences and environmental conditions to optimize performance. These systems use advanced algorithms to continuously adjust their operation, ensuring that energy is used only when and where it’s needed. This results in up to 30 percent greater energy efficiency compared to conventional systems, translating into significant savings for consumers and a reduction in overall energy demand.

For a city like Houston, where energy consumption is a critical concern, the widespread adoption of AI-integrated HVAC systems could have a substantial impact. By optimizing energy use in homes, offices, and industrial spaces, these systems help reduce the strain on the electrical grid, particularly during peak usage times. Additionally, they contribute to lowering greenhouse gas emissions, aligning with Houston’s broader sustainability goals.

The potential of AI in HVAC systems extends beyond efficiency and environmental benefits. These systems enhance the user experience by offering precise control over indoor climates, adapting to individual preferences, and responding to external conditions in real-time. This level of customization not only improves comfort but also supports a smarter, more sustainable approach to energy management.

Houston’s energy transition requires the collective efforts of all sectors. While large corporations and government entities play a significant role, the contributions of startups, research institutions, and energy service companies are equally important. These entities are at the forefront of developing technologies that address both the economic and environmental challenges of our time. Investors are increasingly recognizing the value of funding solutions that offer long-term sustainability alongside financial returns, further driving the adoption of innovative energy technologies.

The integration of AI into HVAC systems represents a crucial step forward in this journey. As Houston continues to evolve as a leader in energy innovation, embracing advanced technologies like AI-driven HVAC systems will be key to achieving a more sustainable and resilient energy future. These systems are not just a technological advancement—they are a strategic tool in the broader effort to reduce energy consumption, lower emissions, and create a healthier environment for all.

At the heart of Houston’s energy transition is the commitment to building a future that balances growth with sustainability. By prioritizing the deployment of smart, energy-efficient technologies, we can ensure that Houston remains at the forefront of the global energy landscape, setting the standard for other cities to follow. As we move forward, the integration of AI into our energy infrastructure, particularly in HVAC systems, will be instrumental in shaping a sustainable and prosperous future for Houston and beyond.

———

Trevor Schick is the president of KOVA, a Texas company creating sustainable solutions in building development.

This article originally ran on EnergyCapital.