Vibhu Sharma, founder and CEO of InnoVent Renewables, joins the Houston Innovators Podcast. Photo via LinkedIn

Vibhu Sharma observed a huge sustainability problem within the automotive industry, and he was tired of no one doing anything about it.

"Globally, humans dispose 1 billion tires every year," Sharma says on the Houston Innovators Podcast. "It's a massive environmental and public health problem because these tires can take hundreds of years to break down, and what they start doing is leaking chemicals into the soil."

Today, 98 percent of all tires end up in landfills, Sharma says, and this waste contributes to a multitude of problems — from mosquito and pest infestation to chemical leaks and fire hazards. That's why he founded InnoVent Renewables, a Houston-based company that uses its proprietary continuous pyrolysis technology to convert waste tires into valuable fuels, steel, and chemicals.

While the process of pyrolysis — decomposing materials using high heat — isn't new, InnoVent's process has a potential to be uniquely impactful. As Sharma explains on the show, he's targeting areas with an existing supply of waste tires. The company's first plant — located in Monterrey, Mexico — is expected to go online early in the new year, an impressive accomplishment considering Sharma started his company just over a year ago and bootstrapped the business with only a friends and family round of funding.

"It's about 16 months or so from start to commercial operations, which is phenomenal when you consider what it takes to build and operate a chemical or petrochemical facility," Sharma says.

Currently, with the facility close to operations, Sharma is looking to secure customers for the plant's products — which includes diesel, steel, and carbon black — and he doesn't have to look too far out of the automotive industry for his potential customer base. Additionally, the plant should be net zero by day one, since Sharma says he will be using the output to fuel operations.

While the first facility is in Mexico, Sharma says they are already looking at potential secondary locations with Texas at the top of his list. Houston, where Sharma has worked for 26 years, has been a strategic headquarters for InnoVent.

"When it came to doing the research and development, we were able to work with experts in the Houston and Texas areas to test out our idea and validate it," Sharma says. "One thing that gets under appreciated about Houston is how well it's connected to the rest of the world. There are so many direct connections between Houston and Latin America, as well as Europe, Middle East, and Asia."

"I also find that the Houston ecosystem is very supportive of new companies and helping them grow," he adds.

Two Houston student teams are competing in Shell's international competition. Courtesy of Shell

2 Houston student teams to compete in Shell’s international eco-friendly driving challenge

Off to the races

What started as a bet in the '30s has evolved into the Shell's Eco-marathon. The competition challenges high school and college students to engineer the fuel-efficient vehicles. And at this year's Shell Eco-marathon Americas, two teams will be representing Houston.

Students from Rice University and James E. Taylor High School are competing in the Shell Eco-marathon Americas, which begins April 3 and wraps up April 6. This year's competition is being held at Sonoma Raceway in Sonoma, California, and will include more than 90 teams from high schools and colleges throughout North and South America.

That's a far cry from the competition's origins. Shell's first fuel efficiency competition took place in 1939, when two Illinois scientists struck a friendly bet over who could engineer a vehicle that ran the furthest on a gallon of gas. The company held an employee competition that year and, save for around a decade and a half in the '70s and '80s, the competition has been held in some capacity every year.

"We really needed to get more young people interested in technology careers," says Pam Rosen, general manager of the Shell Eco-marathon. "It [doesn't] even need to be with Shell. It's more about the method, science, and helping [students[ gravitate toward those opportunities."

The Shell Eco-marathon has adapted with the decades. Students design vehicles that run on gas, diesel, and biofuels, as well as batteries and electricity. Vehicles fueled by GTL (gas-to-liquid) and hydrogen have also competed in the Eco-marathon, Rosen says.

"It kind of ebbs and flows toward what we see the automotive manufacturers trending toward," Rosen says.

The teams from Rice University is a returning presence to the Eco-marathon, while the team from James E. Taylor High School is competing in the Eco-marathon for its first time. Both teams engineered battery-powered electric urban concept vehicles, Rosen says, and describes "urban concept vehicles" as being similar to Smart cars.

The team that takes the top prize in the Americas' urban concept vehicle competition will compete in the Eco-marathon's regional qualifiers in London. As for the lucky winner? They'll head to Italy, where they'll get to drive their vehicle on the racetrack used in the San Marino Grand Prix in Marino, Italy, Rosen says.

You can now roll in a Rolls with a simple Bitcoin transfer. Photo courtesy of Fertitta Entertainment

Tilman Fertitta's Post Oak Motor Cars first in U.S. to accept cryptocurrency

Champing at the bitcoin

The luxury car dealership alongside Tilman Fertitta's The Post Oak Hotel, Post Oak Motor Cars, is the first Rolls-Royce, Bentley, and Bugatti dealership in the U.S. to accept bitcoin and bitcoin cash for payments. Car buyers across the globe can now nab that Bugatti Dico or Chiron with a simple click of the bitcoin processor BitPay.

"The rising of bitcoin sparked my interest," says Fertitta in a statement. "Being a premier luxury car dealer, I always want to offer my customers the very best buying experience and this partnership will allow anyone around the world to purchase our vehicles faster and easier."

Post Oak Motor Cars clients already have access to perks like dinner reservations, hotel stays, and even helicopter transfers. Bitcoin purchasing is the next step.

"We've noticed people prefer to make larger purchases with bitcoin since it is a simple way to make payments," said Sonny Singh, chief commercial officer of BitPay.

"This partnership is timely with the increasing popularity of Rolls-Royce, Bentley, and Bugatti vehicles. Post Oak Motors has a great reputation of selling the finest cars and we are thrilled to be partnering with Tilman."

---

This story originally appeared on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

7 innovative startups that are leading the energy transition in Houston

meet the finalists

Houston has long been touted as the energy capital of the world, and it's now it's also a leading player in the energy transition — home to numerous startups and innovators working toward a cleaner future.

As part of the 2025 Houston Innovation Awards, our Energy Transition Business category honors innovative startups that are providing solution within renewables, climatetech, clean energy, alternative materials, circular economy, and more.

Seven energy transition companies have been named finalists for the 2025 award. They range from a spinoff stimulating subsurface hydrogen from end-of-life oil fields to a company converting prickly pear cactus biogas into energy.

Read more about these climatetech businesses, their founders, and their green initiatives below. Then join us at the Houston Innovation Awards on Nov. 13 at Greentown Labs, when the winner will be unveiled at our live awards ceremony.

Tickets are now on sale for this exclusive event celebrating all things Houston Innovation.

Anning Corporation

Clean energy company Anning Corporation is working to develop geologic hydrogen, a natural carbon-free fuel, using its proprietary stimulation approaches and advanced exploration modeling. The company said that geologic hydrogen has the potential to be the lowest-cost source of reliable baseload electricity in the U.S.

The company was founded by CEO Sophie Broun in 2024 and is a member of Greentown Labs. Last month, it also announced that it was chosen to participate in Breakthrough Energy’s prestigious Fellows Program. Anning raised a pre-seed round this year and is currently raising a $6 million seed round.

Capwell Services

Houston-based methane capture company Capwell Services works to eliminate vented oil and gas emissions economically for operators. According to the company, methane emissions are vented from most oil and gas facilities due to safety protocols, and operators are not able to capture the gas cost-effectively, leading operators to emit more than 14 million metric tons of methane per year in the U.S. and Canada. Founded in 2022, Capwell specializes in low and intermittent flow vents for methane capture.

The company began as a University of Pennsylvania senior design project led by current CEO Andrew Lane. It has since participated in programs with Greentown Labs and Rice Clean Energy Accelerator. The company moved to Houston in 2023 and raised a pre-seed round. It has also received federal funding from the DOE. Capwell is currently piloting its commercial unit with oil and gas operators.

Deep Anchor Solutions

Offshore energy consulting and design company Deep Anchor Solutions aims to help expedite the adoption of floating offshore energy infrastructure with its deeply embedded ring anchor (DERA) technology. According to the company, its patented DERA system can be installed quietly without heavy-lift vessels, reducing anchor-related costs by up to 75 percent and lifecycle CO2 emissions by up to 80 percent.

The company was founded in 2023 by current CEO Junho Lee and CTO Charles Aubeny. Lee earned his Ph.D. in geotechnical engineering from Texas A&M University, where Aubeny is a professor of civil and environmental engineering. The company has participated in numerous accelerators and incubators, including Greentown Labs, MassChallenge, EnergyTech Nexus LiftOff, and others. Lee is an Activate 2025 fellow.

Eclipse Energy

Previously known as Gold H2, Eclipse Energy converts end-of-life oil fields into low-cost, sustainable hydrogen sources. It completed its first field trial this summer, which demonstrated subsurface bio-stimulated hydrogen production. According to the company, its technology could yield up to 250 billion kilograms of low-carbon hydrogen, which is estimated to provide enough clean power to Los Angeles for over 50 years and avoid roughly 1 billion metric tons of CO2 equivalent.

Eclipse is a spinoff of Houston biotech company Cemvita. It was founded in 2022 by Moji Karimi (CEO and chairman of Cemvita), Prabhdeep Sekhon (CEO of Eclipse), Tara Karimi, and Rayyan Islam. The company closed an $8 million series A this year and has plans to raise another round in 2026.

Loop Bioproducts

Agricultural chemical manufacturing company Loop Bioproducts leverages the physiology of prickly pear cactus grown in Texas to produce bioenergy, food, and remediate industrial wastewater streams. The company uses its remote sensing technology, proprietary image-based machine learning model, and R&D innovation to capture raw biogas from the cactuses and is focused on scaling cactuses as an industrial crop on land.

Rhiannon Parker founded Loop Bioproducts in 2023.

Mars Materials

Clean chemical manufacturing business Mars Materials is working to convert captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. The company develops and produces its drop-in chemical products in Houston and uses an in-licensed process for the National Renewable Energy Lab to produce acrylonitrile, which is used to produce plastics, synthetic fibers, and rubbers. The company reports that it plans to open its first commercial plant in the next 18 months.

Founded in 2019 by CEO Aaron Fitzgerald, CTO Kristian Gubsch, and lead engineer Trey Sheridan, the company has raised just under $1 million in capital and is backed by Bill Gates’ Breakthrough Energy, Shell, Black & Veatch, and other organizations.

Solidec

Chemical manufacturing company Solidec has developed autonomous generators that extract molecules from water and air and converts them into pure chemicals and fuels that are free of carbon emissions onsite, eliminating the need for transport, storage, and permitting. The company was founded around innovations developed by Rice University associate professor Haotian Wang.

The company was selected for the Chevron Technology Ventures’ catalyst program, Greentown Labs, NSF I-Corps and was part of the first cohort of the Activate Houston program. It won first place at the 2024 startup pitch competition at CERAWeek. Solidec was founded in 2023 by Wang, who serves as chief scientist, CEO Ryan DuChanois, and CTO Yang Xia. It closed a $2.5 million seed round earlier this year.

-----

The Houston Innovation Awards program is sponsored by Houston Community College, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

clean water research

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water.

PFAS have been linked to immune system disruption, certain cancers, liver damage and reproductive disorders. They can be found in water, soil and air, as well as in products like Teflon pans, waterproof clothing and food packaging. They do not degrade easily and are difficult to remove.

Thus far, PFAS cleanup methods have relied on adsorption, in which molecules cling to materials like activated carbon or ion-exchange resins. But these methods tend to have limited capacity, low efficiency, slow performance and can create additional waste.

The Rice-led study, published in the journal Advanced Materials, centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

The study was led by Rice professor Youngkun Chung, a postdoctoral fellow under the mentorship of Michael S. Wong. It was conducted in collaboration with Seoktae Kang, professor at the Korea Advanced Institute of Science and Technology, and Keon-Ham Kim, professor at Pukyung National University, who first discovered the LDH material.

The team evaluated the LDH material in river water, tap water and wastewater. And, according to Rice, that material’s unique copper-aluminum layers and charge imbalances created an ideal binding environment to capture PFAS molecules.

“To my astonishment, this LDH compound captured PFAS more than 1,000 times better than other materials,” Chung, lead author of the study and now a fellow at Rice’s WaTER (Water Technologies, Entrepreneurship and Research) Institute and Sustainability Institute, said in a news release. “It also worked incredibly fast, removing large amounts of PFAS within minutes, about 100 times faster than commercial carbon filters.”

Next, Chung, along with Rice professors Pedro Alvarez and James Tour, worked to develop an eco-friendly, sustainable method of thermally decomposing the PFAS captured on the LDH material. They heated saturated material with calcium carbonate, which eliminated more than half of the trapped PFAS without releasing toxic by-products.

The team believes the study’s results could potentially have large-scale applications in industrial cleanups and municipal water treatments.

“We are excited by the potential of this one-of-a-kind LDH-based technology to transform how PFAS-contaminated water sources are treated in the near future,” Wong added in the news release. “It’s the result of an extraordinary international collaboration and the creativity of young researchers.”

Axiom Space announces new CEO amid strategic leadership change

new leader

Six months after promoting Tejpaul Bhatia from chief revenue officer to CEO, commercial space infrastructure and human spaceflight services provider Axiom Space has replaced him.

On Oct. 15, Houston-based Axiom announced Jonathan Cirtain has succeeded Bhatia as CEO. Bhatia joined Axiom in 2021. Cirtain remains the company’s president, a role he assumed in June, according to his LinkedIn profile.

In a news release, Axiom said Cirtain’s appointment as CEO is a “strategic leadership change” aimed at advancing the company’s development of space infrastructure.

Axiom hired Cirtain as president in June, according to his LinkedIn profile. The company didn’t publicly announce that move.

Kam Ghaffarian, co-founder and executive chairman of Axiom, said Cirtain’s “proven track record of leadership and commitment to excellence align perfectly with our mission of building era-defining space infrastructure that will drive exploration and fuel the global space economy.”

Aside from praising Cirtain, Ghaffarian expressed his “sincere gratitude” for Bhatia’s work at Axiom, including his leadership as CEO during “a significant transition period.”

Bhatia was promoted to CEO in April after helping Axiom gain more than $1 billion in contracts, Space News reported. He succeeded Ghaffarian as CEO. Axiom didn’t indicate whether Bhatia quit or was terminated.

Cirtain, an astrophysicist, was a senior executive at BWX Technologies, a supplier of nuclear components and fuel, for eight years before joining Axiom. Earlier, Cirtain spent nearly nine years in various roles at NASA’s Marshall Space Flight Center in Huntsville, Alabama. He previously co-founded a machine learning company specializing in Earth observation.

“Axiom Space is pioneering the commercialization of low-Earth orbit infrastructure while accelerating advancements in human spaceflight technologies,” Cirtain said. “I look forward to continuing our team’s important work of driving innovation to support expanded access to space and off-planet capabilities that will underpin the future of space exploration.”

Among other projects, Axiom is developing the world’s first commercial space station, creating next-generation spacesuits for astronauts and sending astronauts on low-Earth orbit missions.