An inspection is no longer required to renew registration, but an emission evaluation is. Photo by Tim Leviston/Getty Images

Texas vehicle owners no longer need to obtain a safety inspection prior to vehicle registration. House Bill 3297, which went into effect January 1 and passed during the 88th Legislature in 2023, eliminates the safety inspection program for non-commercial vehicles.

Under the new law, the $7.50 fee that drivers had to pay as a safety inspection fee has not gone away. It now appears on your registration notice under a new name: "Inspection Program Replacement Fee."

This name change comes courtesy of the legislature, who want to keep collecting this fee because the funds go to state programs such as construction and expansion of state highways — funds they previously collected from the Safety Inspection Fee.

And while the safety inspection is gone, state law will still require that drivers in 17 counties must pass an "emission inspection" on vehicles that are 2 to 24 years old, in order to get your vehicle registered.

But what does an "emissions inspection" mean?

The Texas Department of Public Safety (DPS) details the following changes:

Safety inspection out, emissions testing in
Until December 31, 2024, safety inspections were required for vehicle registration in all 254 counties. Since January 1, 2025, noncommercial vehicles in Texas are no longer be required to have an annual safety inspection. Instead, vehicles have to get an emissions inspection on gasoline-powered vehicles that are 2 to 24 years old.

What is no longer going to be "inspected"?
Texas Transportation Code §548.051 specifies the list of old-school inspection items which will no longer be checked. Moving forward, they will no longer be checking: tires, wheel assembly, safety guards, safety flaps, brakes, steering, lighting, horns, mirrors, windshield wipers, sunscreening devices, and front seat belts in vehicles on which seat belt anchorages were part of the manufacturer's original equipment.

What still is inspected are listed as "Items 12–15": exhaust system, exhaust emissions system, fuel tank cap, and emissions control equipment. These are now part of the emissions inspection process in 17 counties.

Those 17 counties where this is relevant include:

  • DFW: Collin, Dallas, Denton, Ellis, Johnson, Kaufman, Parker, Rockwall, and Tarrant
  • Houston: Brazoria, Fort Bend, Galveston, Harris, and Montgomery
  • Austin: Travis and Williamson
  • El Paso County

Beginning on November 1, 2026, emissions inspections will be required for vehicles registered in Bexar County.

Where will emissions inspections be obtained?
Emissions inspections can be obtained at DPS-certified vehicle inspection stations in the 17 emissions counties. These are the exact same inspection locations we've been going to all along, when it was called a safety inspection. Emissions inspections are not available in the other 237 Texas counties.

DPS offers an inspection station locator online.

What is the estimated cost of an emissions inspection?
Vehicle owners are required to pay an emissions inspection fee of $2.50 annually to the Texas Department of Motor Vehicles (TxDMV) at the time of registration. The actual fee you'll pay at the inspection station (as listed on TCEQ’s website) will be $25.50. Just like the former "safety inspection" fee.

In short: There is little that's changing about the entire inspection process, except they won't bother making you honk your horn.

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.