Base Power co-founders Justin Lopas and Zach Dell. Courtesy photo

An Austin startup that sells electricity and couples it with backup power has entered the Houston market.

Base Power, which claims to be the first and only electricity provider to offer a backup battery, now serves the Houston-area territory served by Houston-based CenterPoint Energy. No solar equipment is required for Base Power’s backup batteries.

The company is initially serving customers in the Cy-Fair, Spring, Cinco Ranch and Mission Bend communities, and will expand to other Houston-area places in the future.

Base Power already serves customers in the Austin and Dallas-Fort Worth markets.

The company says it provides “a cost-effective alternative to generators and solar-battery systems in an increasingly unreliable power grid.”

“Houston represents one of the largest home backup markets in the world, largely due to dramatic weather events that strain the power grid,” says Base Power co-founder and CEO Zach Dell, son of tech billionaire Michael Dell. “We’re eager to provide an accessible energy service that delivers affordable, reliable power to Houston homeowners.”

After paying a $495 or $995 fee that covers installation and permitting, and a $16- or $29-per-month membership fee, Base Power customers gain access to a backup battery and competitive energy rates, the company says. The startup is waiving the $495 setup fee for the first 500 Houston-area homeowners who sign up and make a refundable deposit.

With the Base Power backup package, electricity costs 14.3 cents per kilowatt-hour, which includes Base Power’s 8.5 cents per kilowatt-hour charge and rates charged by CenterPoint. The average electric customer in Houston pays 13 cents per kilowatt-hour, according to EnergySage.

“Base Power is built to solve a problem that so many Texans face: consistent power,” says Justin Lopas, co-founder and chief operating officer of Base Power and a former SpaceX engineer. “Houstonians can now redefine how they power their homes, while also improving the existing power grid.”

Founded in 2023, Base Power has attracted funding from investors such as Thrive Capital, Valor Equity Partners, Altimeter Capital, Trust Ventures, and Terrain. Zach Dell was previously an associate on the investment team at Thrive Capital.

---

This story originally appeared on our sister site, EnergyCapitalHTX.com.

Data Foundry debuted its most recent expansion in North Houston, but that's just the start of the Austin-based company's growth in the Bayou City. Photo courtesy of Data Foundry

Data center in North Houston unveils newest expansion — with more growth planned

uploading...

Data Foundry Inc. may be finished with its 27,000-square-foot expansion at the company's data center in North Houston, but it's by no means finished growing at the site.

The Austin company's 18-acre, master-planned campus at 660 Greens Pkwy. allows for another 200,000 square feet. At build-out, Data Foundry will operate 350,000 square feet of space there.

Currently, the data center encompasses 150,000 square feet. The recent expansion completes the development's first phase. Each of two future phases will add 100,000 square feet.

So far, there's no timetable for the data center's second and third phases.

"It's all a function of demand. We will deploy the capital in response to the pace at which we end up filling up the new space," says Ed Henigin, chief technology officer of Data Foundry.

The 27,000-square-foot expansion debuted in late January at Data Foundry's Houston 2 Data Center. Henigin says space remains available there, but the company does have prospective tenants in the pipeline. It could take anywhere from six months to four years to lease the entire expansion, he says.

Data Foundry says increased customer demand along with business growth in Houston — especially in the healthcare, energy, and manufacturing sectors — prompted the four-megawatt expansion.

"For folks who are outside of Houston, it's an underappreciated market," Henigin says. "It's a huge economy, and there's a lot of dynamic activity happening in Houston and a lot of growth."

Generally, demand for data center space in Houston is "steady and healthy," Henigin adds.

"I don't think we're really overserved or underserved at this point. I think we're pretty well-balanced," he says.

Henigin points out that demand can shift depending on the region's economic conditions, such as upswings or downturns in the energy sector.

"A lot of the folks who have businesses in Houston have learned to be a little cautious, because you don't necessarily know when the next dry spell is coming," he says. "So there's a lot of careful planning or careful execution in business practices in order to be resilient."

Although Houston ranks as the fifth largest metro area in the U.S., it's not among the country's 10 biggest data center markets, unlike Dallas-Fort Worth and Austin/San Antonio. According to DataCenterMap.com, 40 data centers operate in the Houston area. A number of the region's data centers are in North Houston, The Woodlands, and Katy, according to datacenterHawk.

Among Data Foundry's competitors in the Houston market are CyrusOne Inc., Skybox Datacenters LLC, and Stream Data Centers LP — all based in Dallas — and San Francisco-based Digital Realty Trust Inc., according to datacenterHawk.

Customers of Data Foundry's Houston 2 Data Center include Carrizo Oil & Gas Inc., FMC Technologies Inc., Marathon Oil Corp., and Mattress Firm Inc. — all based in Houston — and Galveston-based Moody National Bank.

Houston 2 offers a 185 mph wind-rated infrastructure and an elevation above the 500-year floodplain. During Hurricane Harvey, tenants didn't lose power or network service, or experience flooding, Data Foundry says.

Data Foundry has operated data centers in the Houston area since 2002. Its other Houston data center, inside the Marathon Oil Tower at 5555 San Felipe St., comprises 20,000 square feet.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston wearable biosensing company closes $13M pre-IPO round

fresh funding

Wellysis, a Seoul, South Korea-headquartered wearable biosensing company with its U.S. subsidiary based in Houston, has closed a $13.5 million pre-IPO funding round and plans to expand its Texas operations.

The round was led by Korea Investment Partners, Kyobo Life Insurance, Kyobo Securities, Kolon Investment and a co-general partner fund backed by SBI Investment and Samsung Securities, according to a news release.

Wellysis reports that the latest round brings its total capital raised to about $30 million. The company is working toward a Korea Securities Dealers Automated Quotations listing in Q4 2026 or Q1 2027.

Wellysis is known for its continuous ECG/EKG monitor with AI reporting. Its lightweight and waterproof S-Patch cardiac monitor is designed for extended testing periods of up to 14 days on a single battery charge.

The company says that the funding will go toward commercializing the next generation of the S-Patch, known as the S-Patch MX, which will be able to capture more than 30 biometric signals, including ECG, temperature and body composition.

Wellysis also reports that it will use the funding to expand its Houston-based operations, specifically in its commercial, clinical and customer success teams.

Additionally, the company plans to accelerate the product development of two other biometric products:

  • CardioAI, an AI-powered diagnostic software platform designed to support clinical interpretation, workflow efficiency and scalable cardiac analysis
  • BioArmour, a non-medical biometric monitoring solution for the sports, public safety and defense sectors

“This pre-IPO round validates both our technology and our readiness to scale globally,” Young Juhn, CEO of Wellysis, said in the release. “With FDA-cleared solutions, expanding U.S. operations, and a strong AI roadmap, Wellysis is positioned to redefine how cardiac data is captured, interpreted, and acted upon across healthcare systems worldwide.”

Wellysis was founded in 2019 as a spinoff of Samsung. Its S-Patch runs off of a Samsung Smart Health Processor. The company's U.S. subsidiary, Wellysis USA Inc., was established in Houston in 2023 and was a resident of JLABS@TMC.

Elon Musk vows to launch solar-powered data centers in space

To Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”

Johnson Space Center and UT partner to expand research, workforce development

onward and upward

NASA’s Johnson Space Center in Houston has forged a partnership with the University of Texas System to expand collaboration on research, workforce development and education that supports space exploration and national security.

“It’s an exciting time for the UT System and NASA to come together in new ways because Texas is at the epicenter of America’s space future. It’s an area where America is dominant, and we are committed as a university system to maintaining and growing that dominance,” Dr. John Zerwas, chancellor of the UT System, said in a news release.

Vanessa Wyche, director of Johnson Space Center, added that the partnership with the UT System “will enable us to meet our nation’s exploration goals and advance the future of space exploration.”

The news release noted that UT Health Houston and the UT Medical Branch in Galveston already collaborate with NASA. The UT Medical Branch’s aerospace medicine residency program and UT Health Houston’s space medicine program train NASA astronauts.

“We’re living through a unique moment where aerospace innovation, national security, economic transformation, and scientific discovery are converging like never before in Texas," Zerwas said. “UT institutions are uniquely positioned to partner with NASA in building a stronger and safer Texas.”

Zerwas became chancellor of the UT System in 2025. He joined the system in 2019 as executive vice chancellor for health affairs. Zerwas represented northwestern Ford Bend County in the Texas House from 2007 to 2019.

In 1996, he co-founded a Houston-area medical practice that became part of US Anesthesia Partners in 2012. He remained active in the practice until joining the UT System. Zerwas was chief medical officer of the Memorial Hermann Hospital System from 2003 to 2008 and was its chief physician integration officer until 2009.

Zerwas, a 1973 graduate of the Houston area’s Bellaire High School, is an alumnus of the University of Houston and Baylor College of Medicine.