ArtPark Moving Studios — a local nonprofit that provides art programming for at-risk children — took home a big prize at last year's Project Flourish. Courtesy of First Presbyterian Church

First Presbyterian Church of Houston launched the second round of Project Flourish, a social entrepreneurship contest, on August 18.

The contest is "a creative invitation to the community to help bring fresh ideas to the issues that face a major metropolitan city like Houston," reads a news release. The pitch competition is open to for-profit or nonprofit ideas. What's on the line? Up to $250,000 in seed money, to be divided among an undetermined number of winners as the judges see fit.

Although the church has held the competition in the past, it has made some changes to the newest iteration of the program. Past applicants were not required to have a Houston focus, but this year's individuals and teams must live within 50 miles of downtown Houston and their idea must impact Houston. Those who make it to the semi-final round will be invited to join the eight-week accelerator program, in which they will receive consulting and mentoring in preparation for pitching their ideas to the judges.

Austin Hermann, FPC's Director of the Center for Faith, Work, and Innovation, oversees Project Flourish. When InnovationMap asked him why the contest matters for Houston, Hermann says it's about lending a helping hand to Houston entrepreneurs.

"When you look at all the different groups that are trying to start things in Houston, there's a major gap in the ecosystem… Project Flourish is trying to fill that gap," he says. "We want to connect Houston-based and Houston-focused entrepreneurs who are in the earliest stages of idea formation to the resources of a church — social, intellectual, and financial capital — in a way that other institutions don't because they're not interested in small deals. [We offer] impact investing for and towards groups of individuals who can't get that access anywhere else."

According to a release, in Project Flourish's inaugural round, which concluded in March 2018, funding recipients included art studio on wheels nonprofit ArtPark Moving Studios, which won $55,000, and Rescue Houston, which claimed a $45,000 prize and focuses on empowering victims of sex trafficking.

Hermann says he's most excited about the new Houston emphasis this year as well as the opportunity to get new people involved. The program process is largely the same, but allows a new set of entrepreneurs, application screeners, navigators, skills coaches, and judges to take part.

"We're putting a call out for new ventures [that are] seeking the good of Houston."

For more information or to apply, please visit projectflourish.org. The application is live now through November 1.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.