Even a simple loyalty program can woo customers into visiting more or prevent them from straying. Photo via Getty Images

Almost everyone who has shopped at a supermarket or hopped on a plane has been invited to join a customer loyalty club. But even the businesses that offer these programs are sometimes unsure of who uses and benefits from them most.

Rice Business Professor Arun Gopalakrishnan joined Zhenling Jiang from the University of Pennsylvania and Yulia Nevskaya and Raphael Thomadsen from Washington University in St. Louis to study non-tiered loyalty programs (these differ from tiered loyalty programs, which offer more benefits and exclusivity to customers who spend more).

These simpler programs, the researchers found, can have a striking value: the program they studied increased customer value by almost 30 percent during a five-year time frame, they found. That's considerably higher than previously found in this type of loyalty program. Almost as surprisingly, the program's effect on moderately loyal customers – seemingly among the likely beneficiaries – was minimal. Instead, it had the most dramatic impact on customers who had previously showed either great engagement with the firm or almost no engagement at all.

"The main upside of the program was that it got people to stick around with the firm, preventing defection," Gopalakrishnan said on the podcast INFORMS. At the company he studied, more than 80 percent of the total lift came simply from keeping customers in the fold.

Typically, he added, loyalty programs are assumed to be most worthwhile to frequent or high-spending customers. But the researchers found that very low-frequency customers who joined the program were also more likely to stick around, even though it didn't make much economic difference for them. "There may be some psychological benefit, just from being part of the program, that helps keeps these less frequent customers from walking away," Gopalakrishnan suggested.

Researchers have found it fairly easy to study tiered loyalty programs. But the exact value of the simpler, non-tiered programs is more obscure. That's because the previous studies typically included customers who had self-selected by joining a loyalty program.

Gopalakrishnan's research took a different approach. To address the imprecisions of past research, he and his team built a data collection model that let them examine consumer behavior both before and after customers joined a loyalty program. Importantly, the model also distinguished between program members (some of whom had been automatically signed up for the program) and nonmembers.

Using this more detailed model, the research team studied the behavior of more than 5,500 men's hair salon clients over 30 months. The research was possible because the team had already been following these clients to track how much money they spent during each visit, their frequency of visits, the types of services and products they used and if they used any type of discounts.

Then, ten months into the study, the hair salon chain created a non-tiered loyalty program. Customers who joined received a coupon via email for $5 off for every $100 they spent. Other customers chose not to join. That allowed researchers to compare the behavior in the two groups, with non-members as the control group.

The loyalty program had no impact on the amount of money clients spent during each visit, researchers found. Gopalakrishnan's team speculated that this might be because industries like hair salons have only a limited ability to increase sales of goods and services. Hair, after all, only grows so fast. On the other hand, the loyalty program did appear to influence how often customers visited.

Rather than increasing the frequency of visits for moderate clients, however, non-tiered loyalty programs changed the behavior of customers who were at the two poles of engagement: those who rarely showed up and those who visited so often they were practically on a first-name basis with their stylist.

At a time when consumers are overwhelmed with marketing ploys to lure their time and dollars, a thoughtful loyalty program can indeed be a good business investment, Gopalakrishnan's team concluded. However, managers should bear in mind that the benefit may not be exactly what they expect. Instead of giving a gentle nudge to turn steady customers into bigger spenders, good loyalty programs seem best at corralling outliers into the herd.

------

This article originally ran on Rice Business Wisdom and is based on research from Arun Gopalakrishnan, assistant professor of marketing at Rice Business; Zhenling Jiang, assistant professor of marketing at the Wharton School of the University of Pennsylvania; and Raphael Thomadsen and Yulia Nevskaya, professor of marketing and an assistant professor of marketing, respectively, at the Olin Business School of Washington University in St. Louis.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”