Penrose's advance process control software can increase production by 10 to 15 percent in downstream oil and gas refineries. Pexels

In the next 30 years, the world will need 30 percent more energy due to population growth. While energy production will increase to keep up with demand, there is an increasing concern with the impact on the environment.

"How do you produce more energy without emission increases or more air quality pollution?" asks Erdin Guma, CFO of Penrose Technologies.

According to Guma, Penrose is uniquely well-suited to solve these serious challenges with its advanced process control technology increases the productivity of a chemical plant or refinery by 10 to 15 percent. The increase in productivity means the plants use less fuel to produce the energy. The plant then releases fewer emissions while producing the same amount of energy.

The technology itself is an automation software — similar to autonomous software on a plane. The autonomous operation increases downstream productivity, which brings about the energy efficiency.

"Our autopilot software (like a human operator) can manage and foresee any unexpected disturbances in the plant," Guma explains. "The achievements that the Penrose technology has brought about seemed impossible to chemical and process engineers in the refinery space a few years ago."

Penrose recently signed its first project with one of the biggest downstream firms in the world. With a network of refineries and petrochemical plants around the world, this contract could lead to a global roll out of the Penrose technology.

A ground-breaking technology for O&G
The word "Penrose" is taken from a penrose triangle, an impossible geometrical object. Guma explained that the energy efficiency brought about from their software seemed impossible at first. Penrose has been able to reduce emissions inside plants and refineries by 15 to 20 percent while keeping production at the same level.

In 2007, a chief engineer working at a major oil and gas processing plant in Houston procured the technology for one of his plants. When the engineer saw how well the technology worked, he founded Penrose Technologies in 2017 with Tom Senyard, CTO at Penrose, who originally developed the technology.

After starting the company at the end of 2007, Penrose joined Station Houston. Guma said that by becoming a member, Penrose was able to plug into a large refining and petrochemical network.

"Penrose Technologies is completely self-financed. We worked with [Station Houston] as we finalized the software to find out what potential customers thought of the product. For us, Station Houston has been a great sounding board to potential investors in the company," Guma says.

Guma also explained that while there has been an uptick in innovation in the last few years, the refining and petrochemical business is traditional a slow mover in the uptake of innovation.

"I think more major oil and gas firms are becoming attune to startups and the innovation solutions they offer," Guma says.

He went on to explain that the biggest challenge Penrose faces is perception. Since the software allows plant operators and engineers at the plant to be hands off in the processes, there is a concern with reliability. For industry insiders, any viable product must be reliable even when process conditions at the plant change, which can happen often.

"The Penrose software is maximum hand off control from operators, and the reliability of our software gives us a huge edge in other competing products that can be unreliable," Guma says.

Future growth on a global market
Given the pressing need for more environmentally sustainable energy production, new technology will be adopted in the oil and gas energy. As Guma explains it, there will be no way to continue producing energy as it's been produced for decades because the negative effects of air pollution and emissions will be too severe — particularly in the areas where refineries operate.

"We see the global market for this type of technology as severely underserved," Guma says. "It's a big and sizable market, and I think we can reach a $2 to $3 billion valuation in the next five years."

With a core team of six employees in Houston, Penrose's software is now commercially available, and the company is in full growth mode at this point. The software can be distributed directly to customers, but they are working to develop distribution with major engineering companies as well.

Guma is grateful to be in an environment conducive to energy start-ups. He sees Houston as a major advantage given its proximity to the energy sector.

"No technology rises up in a vacuum. Any new technology needs a good ecosystem to come from," says Guma. "Houston was that ecosystem for Penrose."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC, Memorial Hermann launch partnership to spur new patient care technologies

medtech partnership

Texas Medical Center and Memorial Hermann Health System have launched a new collaboration for developing patient care technology.

Through the partnership, Memorial Hermann employees and physicians will now be able to participate in the TMC Center for Device Innovation (CDI), which will assist them in translating product innovation ideas into working prototypes. The first group of entrepreneurs will pitch their innovations in early 2026, according to a release from TMC.

“Memorial Hermann is excited to launch this new partnership with the TMC CDI,” Ini Ekiko Thomas, vice president of information technology at Memorial Hermann, said in the news release. “As we continue to grow (a) culture of innovation, we look forward to supporting our employees, affiliated physicians and providers in new ways.”

Mentors from Memorial Hermann, TMC Innovation and industry experts with specialties in medicine, regulatory strategy, reimbursement planning and investor readiness will assist with the program. The innovators will also gain access to support systems like product innovation and translation strategy, get dedicated engineering and machinist resources and personal workbench space at the CDI.

“The prototyping facilities and opportunities at TMC are world-class and globally recognized, attracting innovators from around the world to advance their technologies,” Tom Luby, chief innovation officer at TMC Innovation Factor, said in the release.

Memorial Hermann says the partnership will support its innovation hub’s “pilot and scale approach” and hopes that it will extend the hub’s impact in “supporting researchers, clinicians and staff in developing patentable, commercially viable products.”

“We are excited to expand our partnership with Memorial Hermann and open the doors of our Center for Device Innovation to their employees and physicians—already among the best in medical care,” Luby added in the release. “We look forward to seeing what they accomplish next, utilizing our labs and gaining insights from top leaders across our campus.”

Google to invest $40 billion in AI data centers in Texas

Google is investing a huge chunk of money in Texas: According to a release, the company will invest $40 billion on cloud and artificial intelligence (AI) infrastructure, with the development of new data centers in Armstrong and Haskell counties.

The company announced its intentions at a meeting on November 14 attended by federal, state, and local leaders including Gov. Greg Abbott who called it "a Texas-sized investment."

Google will open two new data center campuses in Haskell County and a data center campus in Armstrong County.

Additionally, the first building at the company’s Red Oak campus in Ellis County is now operational. Google is continuing to invest in its existing Midlothian campus and Dallas cloud region, which are part of the company’s global network of 42 cloud regions that deliver high-performance, low-latency services that businesses and organizations use to build and scale their own AI-powered solutions.

Energy demands

Google is committed to responsibly growing its infrastructure by bringing new energy resources onto the grid, paying for costs associated with its operations, and supporting community energy efficiency initiatives.

One of the new Haskell data centers will be co-located with — or built directly alongside — a new solar and battery energy storage plant, creating the first industrial park to be developed through Google’s partnership with Intersect and TPG Rise Climate announced last year.

Google has contracted to add more than 6,200 megawatts (MW) of net new energy generation and capacity to the Texas electricity grid through power purchase agreements (PPAs) with energy developers such as AES Corporation, Enel North America, Intersect, Clearway, ENGIE, SB Energy, Ørsted, and X-Elio.

Water demands

Google’s three new facilities in Armstrong and Haskell counties will use air-cooling technology, limiting water use to site operations like kitchens. The company is also contributing $2.6 million to help Texas Water Trade create and enhance up to 1,000 acres of wetlands along the Trinity-San Jacinto Estuary. Google is also sponsoring a regenerative agriculture program with Indigo Ag in the Dallas-Fort Worth area and an irrigation efficiency project with N-Drip in the Texas High Plains.

In addition to the data centers, Google is committing $7 million in grants to support AI-related initiatives in healthcare, energy, and education across the state. This includes helping CareMessage enhance rural healthcare access; enabling the University of Texas at Austin and Texas Tech University to address energy challenges that will arise with AI, and expanding AI training for Texas educators and students through support to Houston City College.

---

This article originally appeared on CultureMap.com.

TMCi names 11 global startups to latest HealthTech Accelerator cohort

new class

Texas Medical Center Innovation has named 11 medtech startups from around the world to its latest HealthTech Accelerator cohort.

Members of the accelerator's 19th cohort will participate in the six-month program, which kicked off this month. They range from startups developing on-the-go pelvic floor monitoring to 3D-printed craniofacial and orthopedic implants. Each previously participated in TMCi's bootcamp before being selected to join the accelerator. Through the HealthTech Accelerator, founders will work closely with TMC specialists, researchers, top-tier hospital experts and seasoned advisors to help grow their companies and hone their clinical trials, intellectual property, fundraising and more.

“This cohort of startups is tackling some of today’s most pressing clinical challenges, from surgery and respiratory care to diagnostics and women’s health," Tom Luby, chief innovation officer at Texas Medical Center, said in a news release. "At TMC, we bring together the minds behind innovation—entrepreneurs, technology leaders, and strategic partners—to help emerging companies validate, scale, and deliver solutions that make a real difference for patients here and around the world. We look forward to seeing their progress and global impact through the HealthTech Accelerator and the support of our broader ecosystem.”

The 2025 HealthTech Accelerator cohort includes:

  • Houston-based Respiree, which has created an all-in-one cardiopulmonary platform with wearable sensors for respiratory monitoring that uses AI to track breathing patterns and detect early signs of distress
  • College Station-based SageSpectra, which designs an innovative patch system for real-time, remote monitoring of temperature and StO2 for assessing vascular occlusion, infection, and other surgical flap complications
  • Austin-based Dynamic Light, which has developed a non-invasive imaging technology that enables surgeons to visualize blood flow in real-time without the need for traditional dyes
  • Bangkok, Thailand-based OsseoLabs, which develops AI-assisted, 3D-printed patient-specific implants for craniofacial and orthopedic surgeries
  • Sydney, Australia-based Roam Technologies, which has developed a portable oxygen therapy system (JUNO) that provides real-time oxygen delivery optimization for patients with chronic conditions
  • OptiLung, which develops 3D-printed extracorporeal blood oxygenation devices designed to optimize blood flow and reduce complications
  • Bengaluru, India-based Dozee, which has created a smart remote patient monitor platform that uses under-the-mattress bed sensors to capture vital signs through continuous monitoring
  • Montclair, New Jersey-based Endomedix, which has developed a biosurgical fast-acting absorbable hemostat designed to eliminate the risk of paralysis and reoperation due to device swelling
  • Williston, Vermont-based Xander Medical, which has designed a biomechanical innovation that addresses the complications and cost burdens associated with the current methods of removing stripped and broken surgical screws
  • Salt Lake City, Utah-based Freyya, which has developed an on-the-go pelvic floor monitoring and feedback device for people with pelvic floor dysfunction
  • The Netherlands-based Scinvivo, which has developed optical imaging catheters for bladder cancer diagnostics