Houston Methodist is researching the effect of virtual reality on cancer patients. Photo courtesy of Houston Methodist

Virtual reality goes far beyond playing games with titles like Arizona Sunshine, Moss, Robo Recall, and Tetris Effect. VR also is playing an ever-growing role in health care settings. The global market for VR in health care could reach $3.8 billion in 2020, according to one estimate.

VR is touching all corners of heath, including robotic surgeries, training, pain management, and behavior modification, according to InterbrandHealth, a health care branding agency. And these technologies are happening right here in Houston.

Researchers at Houston Methodist Cancer Center are exploring whether exposure to nature, through either a real garden or VR, can ease pain and distress in cancer patients who are undergoing chemotherapy. This approach might decrease the need for prescription painkillers.

Houston Methodist and Texas A&M University are leading this test. Renee Stubbins, a clinical dietitian at Houston Methodist Cancer Center, and Ashley Verzwyvelt, an infusion oncology nurse at the cancer center, proposed the research after several years of studying ways that nature can boost the healing process.

"Anything that affects our patients' comfort — including easing pain and anxiety, and possibly reducing the need for pain medications — is important to their recovery," Stubbins says in a release. "People have an innate connection to nature, and we hope the patients will respond positively."

Three dozen cancer patients receiving chemotherapy infusions every two weeks during at least six cycles will be randomly assigned to one of three rooms: a live-garden-view room; a window-less room, and a room where nature can be experienced through a VR headset.

Teaming up with Houston-based Skyline Art Services, local artist Gonzo247 produced a nature-inspired mural on a wall behind the live garden to create an immersive environment. The mural depicts a flowering garden, blue sky and sunset that enhance the live garden of Texas wildflowers in the foreground.

Researchers will measure pain, distress, blood pressure, heart rate, and saliva cortisol at the beginning and end of each infusion visit. Saliva cortisol, a hormone produced when the body is stressed, helps gauge a patient's condition.

"If this study proves that real or virtual elements of nature help the healing process, then it has potential to positively impact our patients," Verzwyvelt says. "Some of them are hesitant to take pain medication due to concerns of addiction and adverse side effects, so I'm excited to see the possibilities this kind of research could bring."

Houston Methodist Cancer Center says the VR experiment could have implications for treatment of an array of patients who are immobile or whose immune systems are compromised.

"We looked at multiple studies that showed exposure to nature can reduce stress levels and actually increase productivity and creativity," says Ann McNamara, associate professor in the Department of Visualization at Texas A&M. "We want to see if we can reproduce those effects in a natural environment in virtual reality."

The study is being financed by the Center for Health & Nature, a joint initiative of Houston Methodist, Texas A&M and Texan by Nature, a nonprofit conservation group founded by former first lady Laura Bush. The Center for Health & Nature, housed at Houston Methodist Hospital, debuted in 2018.

"There's a gap in research regarding what nature factors lead to increased health, what exposure to nature means, and how much exposure is needed," Bush said when the center was announced.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.