Saigon Hustle owners Sandy Nguyen and Cassie Ghaffar. Courtesy of Saigon Hustle

Anew Houston restaurant will be able to expand courtesy of a $1 million venture capital investment. The Savory Fund selected Houston Vietnamese restaurant Saigon Hustle as the winner of its Million Dollar Restaurant Launch competition.

The private equity firm picked the Houston restaurant from a pool of more than 240 applicants, according to a release. In addition to the money, the investment brings marketing support and access to tools that allow a restaurant to assess its financial performance.

First launched as a ghost kitchen in 2020, Saigon Hustle opened a dedicated brick and mortar restaurant in February. The fast casual concept offers both well-executed takes on classic Vietnamese fare as well as creative interpretations, such as honey-glazed salmon rolls or a twist on the classic bánh xèo: a flour and turmeric crepe filled with braised pork belly, shrimp, and vegetables.

Winning the competition will allow Saigon Hustle founders Cassie Ghaffar and Sandy Nguyen to open a second location of the fast casual restaurant. Nguyen tells CultureMap that the duo have been looking in a number of neighborhoods, including Katy, Memorial, and Bellaire-Meyerland.

"I had tears in my eyes from the overwhelming emotions and we both screamed," Nguyen writes in a message about how she reacted to the news. "This partnership means so much to us."

Asked to elaborate, she notes that Savory Fund's founders have a background in the restaurant industry. They have experience growing restaurants into multi-unit operations.

"More importantly the managing partner also comes from the tech industry," she explains. "They have an amazing team for every aspect to run a successful brand, and that’s what’s so admirable and respectable. We are beyond thrilled at the opportunities we have with them."

Saigon Hustle is one of three establishments Ghaffar and Nguyen operate as part of their Ordinary Concepts hospitality group. They also own Sunday Press, a coffee shop and cafe in Garden Oaks that's adjacent to Saigon Hustle, and Ginger Kale, a healthy eating restaurant in Hermann Park.

“We are thrilled to partner with Cassie and Sandy and select Saigon Hustle as the winner of our Million Dollar Restaurant Launch opportunity,” Savory managing director Andrew K. Smith added. “We are passionate about helping as many restaurateurs as we can because we are restaurant operators at our core. We know the journey from concept to first location and we know the challenges and struggles that accompany growth from first to second unit and we understand them intimately. We hope to create a lifetime worth of success and inspire other concepts to never give up on themselves."

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”