Celltex's stem cell technology has received positive results from its multiple sclerosis, Parkinson's, and rheumatoid arthritis patients. Courtesy of Celltex

The medical community has former governor Rick Perry to thank for a major stride in regenerative medicine.

"He had just gotten elected for the last time and he wanted to leave a legacy. He was tired of people going to Japan or Germany when they needed stem cells," recalls David Eller, chairman, co-founder and CEO of Celltex.

That was 2011, the year that the former president of Dupont Pharmeceuticals-Europe and orthopedic surgeon Dr. Stanley Jones incorporated as Celltex. Perry got the law passed to make it legal to harvest his stem cells, and Jones implanted them while the governor was under the knife for a spinal fusion surgery.

Perry resigned from the Celltex board in 2017, but the truth is, the company no longer needed his clout. Just a year after its debut, the company had in excess of 200 clients, each paying a banking enrollment fee of $6,500. Now, there are close to 1,300.

From research to recovery
Eller is originally from Houston, and he says his hometown is the ideal home base for the company, with its access to the world's largest medical center. The Galleria-area office and lab employ 35 people, with about 50 workers worldwide.

Close to the same time that his friend Perry received his stem cells, Eller also had the treatment in hopes of resolving pain from a college football injury.

"I would go to work and put four to six Advil in my pocket," the CEO recalls.

Within months, all of them remained in his pocket.

But others have had even more dramatic results. Celltex checks in with patients three, six and nine months after their treatments to find out how they're doing. Eighty-three percent of multiple sclerosis patients have reported improvement of symptoms specific to their disease, as have 73 percent of Parkinson's sufferers. But the staggering fact is that 100 percent of 58 respondents with rheumatoid arthritis say they have benefited.

Implementation and the FDA
Celltex's chief scientific officer, Dr. Jane Young, co-authored a study of two severe juvenile rheumatoid arthritis patients whose conditions didn't respond to standard treatments. After trying stem cells, both reported marked improvement in autonomic nervous system and immune function.

Stem cells are gathered through a patient's fat, which can be extracted at any of the 80 facilities around the country that partner with Celltex. The fat is processed at the Houston lab, where processing takes 30 to 35 days.

"We have 15 billion cells in process each day," says Erik Eller, the company's vice president of operations, clarifying that some clients' cells grow faster than others'.

It takes 14 days to come out of cryostasis and leave the lab. From there, the stem cells travel to Hospital Galenia in Cancun, Mexico for implantation, since the FDA categorizes stem cells as a drug if they have expanded as they do at Celltex. That means that a patient cannot use his own stem cells in the United States without a clinical trial. To circumnavigate the red tape, Celltex has simply partnered with the luxurious Mexican hospital.

This is currently the company's biggest challenge, says David Eller, but one he expects to overcome.

"We have very good relations with the US FDA," he says. "They are very interested in what we know. Our approach is really is very progressive and we've grown every year."

Ultimately, Eller hopes to be able to implant stem cells in the United States. But the company's foreign growth is a good start. Celltex is now operating in the Bahamas and is hoping to add Australian extraction facilities sometime this year. They are also in negotiations with a team from Saudi Arabia interested in expanding Celltex to the Middle East.

Other goals for Celltex include improvements both in the realms of sales and revenue and streamlining and improving the safety and efficacy of treatment. Research collaborations with Baylor College of Medicine and Texas A&M will help with the company's medical credibility. This all may help to convince the FDA to allow the Celltex to get a biologics license, the final proof that it is not a drug company. But no matter how it's categorized, Celltex is growing exponentially as its cells.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice biotech accelerator appoints 2 leading researchers to team

Launch Pad

The Rice Biotech Launch Pad, which is focused on expediting the translation of Rice University’s health and medical technology discoveries into cures, has named Amanda Nash and Kelsey L. Swingle to its leadership team.

Both are assistant professors in Rice’s Department of Bioengineering and will bring “valuable perspective” to the Houston-based accelerator, according to Rice. 

“Their deep understanding of both the scientific rigor required for successful innovation and the commercial strategies necessary to bring these technologies to market will be invaluable as we continue to build our portfolio of lifesaving medical technologies,” Omid Veiseh, faculty director of the Launch Pad, said in a news release.

Amanda Nash

Nash leads a research program focused on developing cell communication technologies to treat cancer, autoimmune diseases and aging. She previously trained as a management consultant at McKinsey & Co., where she specialized in business development, portfolio strategy and operational excellence for pharmaceutical and medtech companies. She earned her doctorate in bioengineering from Rice and helped develop implantable cytokine factories for the treatment of ovarian cancer. She holds a bachelor’s degree in biomedical engineering from the University of Houston.

“Returning to Rice represents a full-circle moment in my career, from conducting my doctoral research here to gaining strategic insights at McKinsey and now bringing that combined perspective back to advance Houston’s biotech ecosystem,” Nash said in the release. “The Launch Pad represents exactly the kind of translational bridge our industry needs. I look forward to helping researchers navigate the complex path from discovery to commercialization.”

Kelsey L. Swingle

Swingle’s research focuses on engineering lipid-based nanoparticle technologies for drug delivery to reproductive tissues, which includes the placenta. She completed her doctorate in bioengineering at the University of Pennsylvania, where she developed novel mRNA lipid nanoparticles for the treatment of preeclampsia. She received her bachelor’s degree in biomedical engineering from Case Western Reserve University and is a National Science Foundation Graduate Research Fellow.

“What draws me to the Rice Biotech Launch Pad is its commitment to addressing the most pressing unmet medical needs,” Swingle added in the release. “My research in women’s health has shown me how innovation at the intersection of biomaterials and medicine can tackle challenges that have been overlooked for far too long. I am thrilled to join a team that shares this vision of designing cutting-edge technologies to create meaningful impact for underserved patient populations.”

The Rice Biotech Launch Pad opened in 2023. It held the official launch and lab opening of RBL LLC, a biotech venture creation studio in May. Read more here.

University of Houston archaeologists make history with Mayan tomb discovery

History in the Making

Two University of Houston archaeologists have made scientific history with the discovery of a Mayan king's tomb in Belize.

The UH team led by husband and wife scientists Arlen F. Chase and Diane Z. Chase made the discovery at Caracol, the largest Mayan archeological site in Belize, which is situated about 25 miles south of Xunantunich and the town of San Ignacio. Together with Belize's Institute of Archeology, as well as support from the Geraldine and Emory Ford Foundation and the KHR Family Fund, they uncovered the tomb of Caracol's founder, King Te K’ab Chaak. Their work used airborne light detection and ranging technology to uncover previously hidden roadways and structures that have been reclaimed by the jungle.

The tomb was found at the base of a royal family shrine. The king, who ascended the throne in 331 AD, lived to an advanced enough age that he no longer had teeth. His tomb held a collection of 11 pottery vessels, carved bone tubes, jadeite jewelry, a mosaic jadeite mask, Pacific spondylus shells, and various other perishable items. Pottery vessels found in the chamber depict a Maya ruler wielding a spear as he receives offerings from supplicants represented as deities; the figure of Ek Chuah, the Maya god of traders, surrounded by offerings; and bound captives, a motif also seen in two related burials. Additionally, two vessels had lids adorned with modeled handles shaped like coatimundi (pisote) heads. The coatimundi, known as tz’uutz’ in Maya, was later adopted by subsequent rulers of Caracol as part of their names.

 Diane Chase archaeologist in Mayan tomb Diane Z. Chase in the Mayan tomb. Photo courtesy of University of Houston

During the Classical Period, Caracol was one of the main hubs of the Mayan Lowlands and covered an area bigger than that of present-day Belize City. Populations survived in the area for at least 1,000 years before the city was abandoned sometime around 900 AD. The royal dynasty established by Te K’ab Chaak continued at Caracol for over 460 years.

The find is also significant because this was roughly when the Mexican city of Teotihuacan made contact with Caracol, leading to a long relationship of trade and cultural exchange. Cremation sites found in Caracol contain items that would have come from Teotihuacan, showing the relationship between the two distant cities.

"Both central Mexico and the Maya area were clearly aware of each other’s ritual practices, as reflected in the Caracol cremation," said Arlen F. Chase, professor and chair of Comparative Cultural Studies at the University of Houston.

“The connections between the two regions were undertaken by the highest levels of society, suggesting that initial kings at various Maya cities — such as Te K’ab Chaak at Caracol — were engaged in formal diplomatic relationships with Teotihuacan.”

The Chases will present their findings at a conference on Maya–Teotihuacan interaction hosted by the Maya Working Group at the Santa Fe Institute in New Mexico in August 2025.

 UH professors Chase make Mayan Discovery UH archaeologists Arlen F. Chase and Diane Z. Chase Photo courtesy of University of Houston

 

---

This story originally appeared on CultureMap.com.

Houston palliative care company integrates with Epic platforms

epic scale

Patients and medical teams using MyChart and other Epic Systems' software will now be able to access Houston-based Koda Health's AI-enhanced end-of-life planning platform.

The Houston-based palliative care company, which was born out of the TMC's Biodesign Fellowship, has integrated its advance care planning platform with Epic, one of the most widely used electronic health record (EHR) systems in the U.S., according to a news release.

Epic estimates that more than 325 million patients have a current electronic record in its systems.

“This is a significant milestone for our mission to make advance care planning scalable, meaningful, and seamless,” Tatiana Fofanova, CEO and co-founder of Koda Health, said in the release. “By integrating into systems already used by care teams, we help eliminate friction and ensure that care delivery honors what patients truly want—especially during serious illness and at the end of life.”

The partnership will streamline processes for both patients and clinicians. Users will be able to drop advance care plans directly into the Epic charts, which will be accessible through MyChart for patients and proxies and through Epic Hyperspace/Hyperdrive for care teams. Doctors can also initiate and manage advance care plans through a simple Epic order for patients.

According to Koda Health, its platform saves an average of $10,000 to $15,000 per patient. Roughly 85 percent of users complete advance care plan documents when using the platform, which is four times the national average.

“We developed Koda to give providers the time, training, and tools to guide these critical conversations," Dr. Desh Mohan, co-founder and chief medical officer at Koda Health, added in the statement. "Our integration now makes it possible to operationalize ACP at scale—aligned with value-based care goals and clinical reality.”

The company announced a partnership with Dallas-based Guidehealth, which integrates into primary care workflows and allows providers to identify high-risk patients, coordinate care and reduce administrative burden. Guidehealth works with more than 500,000 patients

Koda Health was founded in 2020 and closed an oversubscribed seed round for an undisclosed amount last year, with investments from AARP, Memorial Hermann Health System and the Texas Medical Center Venture Fund. The company also added Kidney Action Planning to its suite of services in 2024.