Rice University's Lei Li has been awarded a $550,000 NSF CAREER Award to develop wearable, hospital-grade medical imaging technology. Photo by Jeff Fitlow/ Courtesy Rice University

Another Houston scientist has won one of the highly competitive National Science Foundation (NSF) CAREER Awards.

Lei Li, an assistant professor of electrical and computer engineering at Rice University, has received a $550,000, five-year grant to develop wearable, hospital-grade medical imaging technology capable of visualizing deep tissue function in real-time, according to the NSF. The CAREER grants are given to "early career faculty members who demonstrate the potential to serve as academic models and leaders in research and education."

“This is about giving people access to powerful diagnostic tools that were once confined to hospitals,” Li said in a news release from Rice. “If we can make imaging affordable, wearable and continuous, we can catch disease earlier and treat it more effectively.”

Li’s research focuses on photoacoustic imaging, which merges light and sound to produce high-resolution images of structures deep inside the body. It relies on pulses of laser light that are absorbed by tissue, leading to a rapid temperature rise. During this process, the heat causes the tissue to expand by a fraction, generating ultrasound waves that travel back to the surface and are detected and converted into an image. The process is known to yield more detailed images without dyes or contrast agents used in some traditional ultrasounds.

However, current photoacoustic systems tend to use a variety of sensors, making them bulky, expensive and impractical. Li and his team are taking a different approach.

Instead of using hundreds of separate sensors, Li and his researchers are developing a method that allows a single sensor to capture the same information via a specially designed encoder. The encoder assigns a unique spatiotemporal signature to each incoming sound wave. A reconstruction algorithm then interprets and decodes the signals.

These advances have the potential to lower the size, cost and power consumption of imaging systems. The researchers believe the device could be used in telemedicine, remote diagnostics and real-time disease monitoring. Li’s lab will also collaborate with clinicians to explore how the miniaturized technology could help monitor cancer treatment and other conditions.

“Reducing the number of detection channels from hundreds to one could shrink these devices from bench-top systems into compact, energy-efficient wearables,” Li said in the release. “That opens the door to continuous health monitoring in daily life—not just in hospitals.”

Amanda Marciel, the William Marsh Rice Trustee Chair of chemical and biomolecular engineering and an assistant professor at Rice, received an NSF CAREER Award last year. Read more here.

The UH team is developing ways to use machine learning to ensure that power systems can continue to run efficiently when pulling their energy from wind and solar sources. Photo via Getty Images

Houston researcher scores prestigious NSF award for machine learning, power grid tech

grant funding

An associate professor at the University of Houston received the highly competitive National Science Foundation CAREER Award earlier this month for a proposal focused on integrating renewable resources to improve power grids.

The award grants more than $500,000 to Xingpeng Li, assistant professor of electrical and computer engineering and leader of the Renewable Power Grid Lab at UH, to continue his work on developing ways to use machine learning to ensure that power systems can continue to run efficiently when pulling their energy from wind and solar sources, according to a statement from UH. This work has applications in the events of large disturbances to the grid.

Li explains that currently, power grids run off of converted, stored kinetic energy during grid disturbances.

"For example, when the grid experiences sudden large generation losses or increased electrical loads, the stored kinetic energy immediately converted to electrical energy and addressed the temporary shortfall in generation,” Li said in a statement. “However, as the proportion of wind and solar power increases in the grid, we want to maximize their use since their marginal costs are zero and they provide clean energy. Since we reduce the use of those traditional generators, we also reduce the power system inertia (or stored kinetic energy) substantially.”

Li plans to use machine learning to create more streamlined models that can be implemented into day-ahead scheduling applications that grid operators currently use.

“With the proposed new modeling and computational approaches, we can better manage grids and ensure it can supply continuous quality power to all the consumers," he said.

In addition to supporting Li's research and model creations, the funds will also go toward Li and his team's creation of a free, open-source tool for students from kindergarten up through their graduate studies. They are also developing an “Applied Machine Learning in Power Systems” course. Li says the course will help meet workforce needs.

The CAREER Award recognizes early-career faculty members who “have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization,” according to the NSF. It's given to about 500 researchers each year.

Earlier this year, Rice assistant professor Amanda Marciel was also

granted an NSF CAREER Award to continue her research in designing branch elastomers that return to their original shape after being stretched. The research has applications in stretchable electronics and biomimetic tissues.

------

This article originally ran on EnergyCapital.

This week's roundup of Houston innovators includes Omair Tariq of Cart.com, Amanda Marciel of Rice University, and Youngro Lee of Brassica. Photos courtesy

3 Houston innovators to know this week

who's who

Editor's note: Welcome to another Monday edition of Innovators to Know. Today I'm introducing you to three Houstonians to read up about — three individuals behind recent innovation and startup news stories in Houston as reported by InnovationMap. Learn more about them and their recent news below by clicking on each article.


Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Last November, Houston-founded logistics tech company Cart.com announced that it would be returning its headquarters to Houston after spending the last two years growing in Austin. But Co-Founder and CEO Omair Tariq says that while the corporate address may have changed, he actually never left.

"I've been in Houston now forever — and I don't think I'm planning on leaving anytime soon. I love Houston — this city has given me everything I have," Tariq says on the Houston Innovators Podcast. "I even love the traffic and everything people hate about Houston."

Tariq, who was born in Pakistan and grew up in Dubai before relocating as a teen to Houston, shared his entrepreneurial journey on the show, which included starting a jewelry business and being an early employee at Blinds.com before it was acquired in 2014 by Home Depot. Continue reading.

Amanda Marciel, the William Marsh Rice Trustee Chair of chemical and biomolecular engineering at Rice University

In addition to supporting Amanda Marciel's research, the funds will also go toward creating opportunities in soft matter research for undergraduates and underrepresented scientists at Rice University. Photo by Gustavo Raskosky/Rice University

An assistant professor at Rice University has won one of the highly competitive National Science Foundation's CAREER Awards.

The award grants $670,406 over five years to Amanda Marciel, the William Marsh Rice Trustee Chair of chemical and biomolecular engineering, to continue her research in designing branch elastomers that return to their original shape after being stretched, according to a statement from Rice. The research has applications in stretchable electronics and biomimetic tissues.

“My goal is to create a new paradigm for designing elastomers,” Marciel said in a statement. “The research has four aims: to determine the role of comb polymer topology in forming elastomers, understanding the effects of that topology on elastomer mechanics, characterizing its effects on elastomer structure and increasing the intellectual diversity in soft matter research.” Continue reading.

Youngro Lee, founder of Brassica

Youngro Lee is celebrating the acquisition of his company, Brassica. Photo courtesy

A Houston fintech innovator is celebrating his latest startup's exit.

Brassica Technologies Inc., a fintech infrastructure company that's provides a platform for alternative assets, has been acquired by BitGo, a Palo Alto, California-based tech company with digital asset services. The terms of the deal were not disclosed.

"Joining forces with BitGo is a significant step towards Brassica's ultimate vision of building the financial infrastructure of the future," Youngro Lee, founder and CEO of Brassica, says in a news release. "Our strength lies in our 'one stop shop' approach of providing API-enabled infrastructure for the alternative assets industry. Continue reading.

In addition to supporting Amanda Marciel's research, the funds will also go toward creating opportunities in soft matter research for undergraduates and underrepresented scientists at Rice University. Photo by Gustavo Raskosky/Rice University

Houston professor earns competitive NSF award, nearly $700,000 grant

science supported

An assistant professor at Rice University has won one of the highly competitive National Science Foundation's CAREER Awards.

The award grants $670,406 over five years to Amanda Marciel, the William Marsh Rice Trustee Chair of chemical and biomolecular engineering, to continue her research in designing branch elastomers that return to their original shape after being stretched, according to a statement from Rice. The research has applications in stretchable electronics and biomimetic tissues.

“My goal is to create a new paradigm for designing elastomers,” Marciel said in a statement. “The research has four aims: to determine the role of comb polymer topology in forming elastomers, understanding the effects of that topology on elastomer mechanics, characterizing its effects on elastomer structure and increasing the intellectual diversity in soft matter research.”

Marciel, who joined the faculty at Rice in 2019, is one of about 500 researchers to receive the NSF's CAREER Award each year. The award recognizes early-career faculty members who “have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization,” according to the NSF.

In addition to supporting Marciel's research, the funds will also go toward creating opportunities in soft matter research for undergraduates and underrepresented scientists. It will establish a new annual symposium called the Texas Soft Matter Meeting, where community college teachers can participate in a soft matter laboratory module and students in the Research Experiences for Undergrads program at Rice will present their summer research.

Recently, Rice also launched the new Rice Synthetic Biology Institute, which aims to strengthen the synthetic biology community across disciplines at the university. It is part of an $82 million investment the university put toward synthetic biology, neuroengineering and physical biology in 2018.

A fellow team or Rice researcher is also working on wearable haptic accessories. A member of the team was recently named to the 2024 cohort of Rice Innovation Fellows. Click here to learn more.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston femtech co. debuts new lactation and wellness pods

mom pod

Houston-based femtech company Work&, previously known as Work&Mother, has introduced new products in recent months aimed at supporting working mothers and the overall health of all employees.

The company's new Lactation Pod and Hybrid Pod serve as dual-use lactation and wellness spaces to meet employer demand, the company shared in a news release. The compact pods offer flexible design options that can serve permanent offices and nearly all commercial spaces.

They feature a fully compliant lactation station while also offering wellness functionalities that can support meditation, mental health, telehealth and prayer. In line with Work&'s other spaces, the pods utilize the Work& scheduling platform, which prioritizes lactation bookings to help employers comply with the PUMP Act.

“This isn’t about perks,” Jules Lairson, Work& co-founder and COO, said in the release. “It’s about meeting people where they are—with dignity and intentional design. That includes the mother returning to work, the employee managing anxiety, and everyone in between.”

According to the company, several Fortune 500 companies are already using the pods, and Work& has plans to grow the products' reach.

Earlier this year, Work& introduced its first employee wellness space at MetroNational’s Memorial City Plazas, representing Work&'s shift to offer an array of holistic health and wellness solutions for landlords and tenants.

The company, founded in 2017 by Lairson and CEO Abbey Donnell, was initially focused on outfitting commercial buildings with lactation accommodations for working parents. While Work& still offers these services through its Work&Mother branch, the addition of its Work&Wellbeing arm allowed the company to also address the broader wellness needs of all employees.

The company rebranded as Work& earlier this year.

Rice biotech studio secures investment from Modi Ventures, adds founder to board

fresh funding

RBL LLC, which supports commercialization for ventures formed at the Rice University Biotech Launch Pad, has secured an investment from Houston-based Modi Ventures.

Additionally, RBL announced that it has named Sahir Ali, founder and general partner of Modi Ventures, to its board of directors.

Modi Ventures invests in biotech companies that are working to advance diagnostics, engineered therapeutics and AI-driven drug discovery. The firm has $134 million under management after closing an oversubscribed round this summer.

RBL launched in 2024 and is based out of Houston’s Texas Medical Center Helix Park. William McKeon, president and CEO of the TMC, previously called the launch of RBL a “critical step forward” for Houston’s life sciences ecosystem.

“RBL is dedicated to building companies focused on pioneering and intelligent bioelectronic therapeutics,” Ali said in a LinkedIn post. “This partnership strengthens the Houston biotech ecosystem and accelerates the transition of groundbreaking lab discoveries into impactful therapies.”

Ali will join board members like managing partner Paul Wotton, Rice bioengineering professor Omid Veiseh, scientist and partner at KdT Ventures Rima Chakrabarti, Rice alum John Jaggers, CEO of Arbor Biotechnologies Devyn Smith, and veteran executive in the life sciences sector James Watson.

Ali has led transformative work and built companies across AI, cloud computing and precision medicine. Ali also serves on the board of directors of the Drug Information Association, which helps to collaborate in drug, device and diagnostics developments.

“This investment by Modi Ventures will be instrumental to RBL’s growth as it reinforces confidence in our venture creation model and accelerates our ability to develop successful biotech startups,” Wotton said in the announcement. "Sahir’s addition to the board will also amplify this collaboration with Modi. His strategic counsel and deep understanding of field-defining technologies will be invaluable as we continue to grow and deliver on our mission.”