This week's roundup of Houston innovators includes Sean Kelly of Amperon, Amanda Burkhardt of Phiogen, and Mielad Ziaee of UH. Photos courtesy

Editor's note: Welcome to another Monday edition of Innovators to Know. Today I'm introducing you to three Houstonians to read up about — three individuals behind recent innovation and startup news stories in Houston as reported by InnovationMap. Learn more about them and their recent news below by clicking on each article.

Sean Kelly, CEO and co-founder of Amperon

Amperon CEO Sean Kelly joins the Houston Innovators Podcast to share his company's growth and expansion plans. Photo via LinkedIn

The technology that Amperon provides its customers — a comprehensive, AI-backed data analytics platform — is majorly key to the energy industry and the transition of the sector. But CEO Sean Kelly says he doesn't run his business like an energy company.

Kelly explains on the Houston Innovators Podcast that he chooses to run Amperon as a tech company when it comes to hiring and scaling.

"There are a lot of energy companies that do tech — they'll hire a large IT department, they'll outsource a bunch of things, and they'll try to undergo a product themselves because they think it should be IP," he says on the show. "A tech company means that at your core, you're trying to build the best and brightest technology." Continue reading.

Amanda Burkhardt, CEO of Phiogen

Spun out of Baylor College of Medicine, Phiogen was selected out of 670 companies to pitch at SXSW earlier this month. Photo via LinkedIn

A new Houston biotech company won a special award at the 16th Annual SXSW Pitch Award Ceremony earlier this month.

Phiogen, one of 45 companies that competed in nine categories, was the winner for best inclusivity, much to the surprise of the company’s CEO, Amanda Burkhardt.

Burkhardt tells InnovationMap that while she wanted to represent the heavily female patient population that Phiogen seeks to treat, really she just hires the most skilled scientists.

“The best talent was the folks that we have and it ends up being we have three green card holders on our team. As far as ethnicities, we have on our team we have Indian, African-American, Korean, Chinese Pakistani, Moroccan and Hispanic people and that just kind of just makes up the people who helped us on a day-to-day basis,” she explains. Continue reading.

Mielad Ziaee, 2023-2024 All of Us Research Scholar

Mielad Ziaee, a 20-year-old student at the University of Houston, was tapped for a unique National Institutes of Health program. Photo via UH.edu

A Houston-area undergraduate student has been tapped for a prestigious national program that pairs early-career investigators with health research professionals.

Mielad Ziaee was selected for the National Institutes of Health’s 2023-2024 All of Us Research Scholar Program, which connects young innovators with experts "working to advance the field of precision medicine," according to a statement from UH. Ziaee – a 20-year-old majoring in psychology and minoring in biology, medicine and society who plans to graduate in 2025 — plans to research how genomics, or the studying of a person's DNA, can be used to impact health.

“I’ll be one of the ones that define what this field of personalized, precision medicine will look like in the future,” Ziaee said in a statement. “It’s exciting and it’s a big responsibility that will involve engaging diverse populations and stakeholders from different systems – from researchers to health care providers to policymakers.” Continue reading.

Spun out of Baylor College of Medicine, Phiogen was selected out of 670 companies to pitch at SXSW earlier this month. Photo via Getty Images

Houston startup recognized for inclusivity on journey to commercialize next-gen therapeutics

future of medicine

A new Houston biotech company won a special award at the 16th Annual SXSW Pitch Award Ceremony earlier this month.

Phiogen, one of 45 companies that competed in nine categories, was the winner for best inclusivity, much to the surprise of the company’s CEO, Amanda Burkhardt.

Burkhardt tells InnovationMap that while she wanted to represent the heavily female patient population that Phiogen seeks to treat, really she just hires the most skilled scientists.

“The best talent was the folks that we have and it ends up being we have three green card holders on our team. As far as ethnicities, we have on our team we have Indian, African-American, Korean, Chinese Pakistani, Moroccan and Hispanic people and that just kind of just makes up the people who helped us on a day-to-day basis,” she explains.

Phiogen was selected out of 670 companies to be in the health and nutrition category at SXSW.

“We did really well, but there was another company that also did really well. And so we were not selected for the pitch competition, which we were a little bummed about because I killed the pitch,” Burkhardt recalls.

But Phiogen is worthy of note, pitch competition or not. The new company spun off from research at Dr. Anthony Maresso’s TAILOR Labs, a personalized phage therapy center at Baylor College of Medicine, last June.

“Our whole goal is to create the next generation of anti-infectives,” says Burkhardt.

That means that the company is making alternatives to antibiotics, but as Burkhardt says, “We’re hoping to be better than antibiotics.”

How does it work? Bacteriophages are viruses that infect bacteria.

“You can imagine them as the predators in the bacteria world, but they don't infect humans. They don't affect animals. They only infect bacteria,” Burkhardt explains.

Phiogen utilizes carefully honed bacteriophages to attack bacteria that include the baddies behind urinary tract infection (UTI), bacteremia (bacteria in the blood), and skin wounds.

The team’s primary focus is on treatment-resistant UTI. One example was a male patient who received Phiogen’s treatment thanks to an emergency-use authorization from the FDA. The gentleman had been suffering from an infection for 20 years. He was treated with Phiogen’s bacteriophage therapy for two weeks and completely cleared his infection with no recurrence.

Amanda Burkhardt is the CEO of Phiogen. Photo via LinkedIn

But Phiogen has its sights set well beyond the first maladies it’s treated. An oft-quoted 2016 report projected that by 2050, 10 million people a year will be dying from drug-resistant infections.

“A lot of scientists call it the silent pandemic because it's happening now, we're living in it, but there's just not as much being said about it because it normally happens to people who are already in the hospital for something else, or it's a comorbidity, but that's not always the case, especially when we're talking about urinary tract infections,” says Burkhardt.

Bacteriophages are important because they can be quickly trained to fight against resistant strains, whereas it takes years and millions of dollars to develop new antibiotics. There are 13 clinical trials that are currently taking place for bacteriophage therapy. Burkhardt estimates that the treatment method will likely gain FDA approval in the next five years.

“The FDA actually has been super flexible on progressing forward. Because they are naturally occurring, there's not really a safety risk with these products,” she says.

And Burkhardt, whose background is in life-science commercialization, says there’s no better place to build Phiogen than in Houston.

“You have Boston, you have the Bay [Area], and you have the Gulf Coast,” she says. “And Houston is cheaper, the people are friendlier, and it’s not a bad place to be in the winter.”

She also mentions the impressive shadow that Helix Park will cast over the ecosystem. Phiogen will move later this year to the new campus — one of the labs selected to join Baylor College of Medicine.

And as for that prize, chances are, it won’t be Phiogen’s last.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.