The University of Houston has received a grant from the Baker Hughes Foundation. Photo courtesy of University of Houston

A Houston school is cashing in a major gift from a local energy company in order to support the industry's future workforce, research, and more.

The University of Houston Energy Transition Institute received a $100,000 grant from the Baker Hughes Foundation last week, which will work towards the ETI’s goals to support workforce development programs, and environmental justice research.

The program addresses the impact of energy transition solutions in geographical areas most-affected by environmental impacts.

“We are proud to support the University of Houston in its environmental justice research and workforce development programs; at Baker Hughes, we strive to take energy forward, and are committed to a fair and just energy transition,” says Chief Sustainability Officer Allyson Book in a news release. “Novel educational approaches centered around social, climate and environmental justice are crucial to creating a sustainable future for generations to come.”

The grant aims to help ETI in analyzing environmental footprints of energy use processes, energy use processes, impact on health, and emissions, as well as support the university’s Energy Scholars Program, which focuses on research programs on carbon management, hydrogen, and circular plastics for undergraduate students.The donation also supports Baker Hughes’ work with the United Nations’ Sustainable Development Goals (SDGs) that work to ensure “inclusive and equitable quality education for all.”

“We look forward to working with the Baker Hughes Foundation to address grand challenges in energy and chemicals and create a sustainable and equitable future for all,” says Ramanan Krishnamoorti, vice president of energy and innovation at UH.

ETI launched a year ago through a $10 million grant from Shell USA Inc. and Shell Global Solutions (US) Inc., and is led by Joe Powell, who opted to take the helm of the program over retiring, telling EnergyCapital that it was an opportunity he couldn't pass up.

UH has announced a central campus innovation hub that will house UH's programs for STEM, social sciences, business and arts. Slated to open in 2025, the 70,000 square foot hub will house a makerspace, the Cyvia and Melvyn Wolff Center for Entrepreneurship, the Energy Transition Institute, innovation programs, and Presidential Frontier Faculty labs and offices.

“The University of Houston aims to transform lives and communities through education, research, innovation and service in a real-world setting," Krishnamoorti says in a news release. “I am confident that working together we will make a greater impact.”

------

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

United breaks ground on $177 million facility and opens tech center at IAH

off the ground

United Airlines announced new infrastructure investments at George Bush Intercontinental Airport as part of the company’s ongoing $3.5 billion investment into IAH.

United broke ground on a new $177 million Ground Service Equipment (GSE) Maintenance Facility this week that will open in 2027.

The 140,000-square-foot GSE facility will support over 1,800 ground service vehicles and with expansive repair space, shop space and storage capacity. The GSE facility will also be targeted for LEED Silver certification. United believes this will provide more resources to assist with charging batteries, fabricating metal and monitoring electronic controls with improved infrastructure and modern workspaces.

Additionally, the company opened its new $16 million Technical Operations Training Center.

The center will include specialized areas for United's growing fleet, and advanced simulation technology that includes scenario-based engine maintenance and inspection training. By 2032, the Training Center will accept delivery of new planes. This 91,000-square-foot facility will include sheet metal and composite training shops as well.

The Training Center will also house a $6.3 million Move Team Facility, which is designed to centralize United's Super Tug operations. United’s IAH Move Team manages over 15 Super Tugs across the airfield, which assist with moving hundreds of aircraft to support flight departures, remote parking areas, and Technical Operations Hangars.

The company says it plans to introduce more than 500 new aircraft into its fleet, and increase the total number of available seats per domestic departure by nearly 30%. United also hopes to reduce carbon emissions per seat and create more unionized jobs by 2026.

"With these new facilities, Ground Service Equipment Maintenance Facility and the Technical Operations Training Center, we are enhancing our ability to maintain a world-class fleet while empowering our employees with cutting-edge tools and training,” Phil Griffith, United's Vice President of Airport Operations, said in a news release. “This investment reflects our long-term vision for Houston as a critical hub for United's operations and our commitment to sustainability, efficiency, and growth."

UH study uncovers sustainable farming methods for hemp production

growth plan

A new University of Houston study of hemp microbes can potentially assist scientists in creating special mixtures of microbes to make hemp plants produce more CBD or have better-quality fibers.

The study, led by Abdul Latif Khan, an assistant professor of biotechnology at the Cullen College of Engineering Technology Division, was published in the journal Scientific Reports from the Nature Publishing Group. The team also included Venkatesh Balan, UH associate professor of biotechnology at the Cullen College of Engineering Technology Division; Aruna Weerasooriya, professor of medicinal plants at Prairie View A&M University; and Ram Ray, professor of agronomy at Prairie View A&M University.

The study examined microbiomes living in and around the roots (rhizosphere) and on the leaves (phyllosphere) of four types of hemp plants. The team at UH compared how these microorganisms differ between hemp grown for fiber and hemp grown for CBD production.

“In hemp, the microbiome is important in terms of optimizing the production of CBD and enhancing the quality of fiber,” Khan said in a news release. “This work explains how different genotypes of hemp harbor microbial communities to live inside and contribute to such processes. We showed how different types of hemp plants have their own special groups of tiny living microbes that help the plants grow and stay healthy.”

The study indicates that hemp cultivation can be improved by better understanding these distinct microbial communities, which impact growth, nutrient absorption, stress resilience, synthesis and more. This could help decrease the need for chemical inputs and allow growers to use more sustainable agricultural practices.

“Understanding these microorganisms can also lead to more sustainable farming methods, using nature to boost plant growth instead of relying heavily on chemicals,” Ahmad, the paper’s first author and doctoral student of Khan’s, said the news release.

Other findings in the study included higher fungal diversity in leaves and stems, higher bacterial diversity in roots and soil, and differing microbiome diversity. According to UH, CBD-rich varieties are currently in high demand for pharmaceutical products, and fiber-rich varieties are used in industrial applications like textiles.