Venus Aerospace successfully completed the flight test of its hypersonic engine, the first of an American-developed engine of its kind. Photo courtesy Venus Aerospace

Houston-based Venus Aerospace successfully completed the first U.S. flight test of its proprietary engine at a demonstration at Spaceport America in New Mexico.

Venus’ next-generation rotating detonation rocket engine (RDRE) is supported by a $155,908 federal Small Business Innovation Research (SBIR) grant from NASA and aims to enable vehicles to travel four to six times the speed of sound from a conventional runway. The recent flight test was the first of an American-developed engine of its kind.

"With this flight test, Venus Aerospace is transforming a decades-old engineering challenge into an operational reality,” Thomas d'Halluin, managing partner at Airbus Ventures, an investor in Venus, said in a news release. “Getting a rotating detonation engine integrated, launch-ready, and validated under real conditions is no small feat. Venus has shown an extraordinary ability to translate deep technical insight into hardware progress, and we're proud to support their bold approach in their attempt to unlock the hypersonic economy and forge the future of propulsion."

Venus’ RDRE operates through supersonic shockwaves, called detonations, that generate more power with less fuel. It is designed to be affordable and scalable for defense and commercial systems.

The RDRE is also engineered to work with the company's air-breathing detonation ramjet, the VDR2, which helps enable aircraft to take off from a runway and transition to speeds exceeding Mach 6. Venus plans for full-scale propulsion testing and vehicle integration of this system. Venus’ ultimate goal is to develop a Mach 4 reusable passenger aircraft, known as the Stargazer M4.

"This milestone proves our engine works outside the lab, under real flight conditions," Andrew Duggleby, Venus co-founder and chief technology officer, said in the release. "Rotating detonation has been a long-sought gain in performance. Venus' RDRE solved the last but critical steps to harness the theoretical benefits of pressure gain combustion. We've built an engine that not only runs, but runs reliably and efficiently—and that's what makes it scalable. This is the foundation we need that, combined with a ramjet, completes the system from take-off to sustained hypersonic flight."

The hypersonic market is projected to surpass $12 billion by 2030, according to Venus.

"This is the moment we've been working toward for five years," Sassie Duggleby, CEO and co-founder of Venus Aerospace, added in the release. "We've proven that this technology works—not just in simulations or the lab, but in the air. With this milestone, we're one step closer to making high-speed flight accessible, affordable, and sustainable."

The study will look at improving sustainability within George Bush Intercontinental Airport in Houston. Photo courtesy of Airbus

Houston organizations launch study to explore hydrogen-powered travel

sustainability takes flight

A few major players have teamed up to look into making air travel more sustainable — and it's all happening in Houston.

The Center for Houston’s Future, Airbus, and Houston Airports have signed a memorandum of understanding intended to study the “feasibility of a hydrogen hub at George Bush Intercontinental Airport." The study, which will conclude in March of 2025, will include the participants that will collaborate ways to rethink how their infrastructures could be designed and operated to reduce an overall environmental footprint, and lead to hydrogen-powered aircrafts like the ones Airbus plans to bring to fruition by 2035.

In 2020, Airbus debuted its ZEROe hydrogen-powered aircraft project. The “Hydrogen Hub at Airports'' concept by Airbus unites key airport ecosystem players to develop ways to decarbonize all airport-associated infrastructure with hydrogen. The study will include airport ground transportation, airport heating, end-use in aviation, and possibly ways to supply adjacent customers in transport and local industries.

The use of hydrogen to power future aircraft aims to assist in eliminating aircraft CO2 emissions in the air, and also can help decarbonize air transport on the ground. With Houston being such a large city, and a destination for some many visiting on business, the Houston airports was an easy spot to assign the study.

"Houston’s airports are experiencing tremendous growth, connecting our city to the world like never before,” Jim Szczesniak, the aviation director for the city of Houston, says in a news release. “As we continue to expand and modernize our facilities, participating in this sustainability study is crucial. Continuing to build a sustainable airport system will ensure a healthy future for Houston, attract top talent and businesses, and demonstrate our commitment to being a responsible global citizen.

"This study will provide us with valuable insights to guide our development and position Houston as a global leader in sustainable aviation innovation for generations to come.”

The CHF was a founding organizer of the HyVelocity Hydrogen Hub, which was selected by the U.S. Department of Energy as one of seven hydrogen hubs in the nation, and will work in the Houston area and the Gulf Coast. The HyVelocity Hydrogen Hub is eligible to receive up to $1.2 billion as part of a Bipartisan Infrastructure Law funding to advance domestic hydrogen production.

“The Center for Houston’s Future is pleased to have played a crucial role in bringing together the partners for this study,” Brett Perlman, the center's outgoing CEO and president, adds. “With Houston’s role as the world’s energy capital, our record of energy innovation and desire to lead in the business of low-carbon energy, Houston is the perfect place to develop our airports as North American clean hydrogen pioneers.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Rice launches 'brain economy' initiative at World Economic Forum

brain health

Rice University has launched an initiative that will position “brain capital” as a key asset in the 21st century.

Rice rolled out the Global Brain Economy Initiative on Jan. 21 at the World Economic Forum in Davos, Switzerland.

“This initiative positions brain capital, or brain health and brain skills, at the forefront of global economic development, particularly in the age of artificial intelligence,” the university said in a news release.

The Rice-based initiative, whose partners are the University of Texas Medical Branch in Galveston and the Davos Alzheimer’s Collaborative, aligns with a recent World Economic Forum and McKinsey Health Institute report titled “The Human Advantage: Stronger Brains in the Age of AI,” co-authored by Rice researcher Harris Eyre. Eyre is leading the initiative.

“With an aging population and the rapid transformation of work and society driven by AI, the urgency has never been greater to focus on brain health and build adaptable human skills—both to support people and communities and to ensure long-term economic stability,” says Amy Dittmar, a Rice provost and executive vice president for academic affairs.

This initiative works closely with the recently launched Rice Brain Institute.

In its first year, the initiative will establish a global brain research agenda, piloting brain economy strategies in certain regions, and introducing a framework to guide financial backers and leaders. It will also advocate for public policies tied to the brain economy.

The report from the McKinsey Health Institute and World Economic Forum estimates that advancements in brain health could generate $6.2 trillion in economic gains by 2050.

“Stronger brains build stronger societies,” Eyre says. “When we invest in brain health and brain skills, we contribute to long-term growth, resilience, and shared prosperity.”