Here are the eight companies currently being accelerated by Texas Medical Center Innovation. Photo courtesy of TMC

The Texas Medical Center Innovation has named its new cohort of health tech companies it's currently accelerating.

This first batch of companies for 2024 was selected from last fall's TMC Bootcamp. Eight of the 10 startups from the bootcamp have moved on to the Accelerator for HealthTech.

"Hailing from diverse corners of the globe—from the tech corridors of Texas and California to Ireland and Australia—these companies converge with a shared mission—to move healthcare forward," Devin Dunn, head of the Accelerator for Health Tech, writes in a TMC blog post. "Through personalized mentorship and guidance, these eight companies are able to navigate complex challenges and refine their strategies, while leveraging the expertise of Texas Medical Center ecosystem to validate their innovations and drive real-world impact."

The selected companies include:

  • AcorAI, from Stockholm, Sweden, which is developing a first-of-its-kind, hand-held, scalable medical device for non-invasive intracardiac pressure monitoring to improve heart failure management for more than 64 million patients worldwide.
  • AirSeal, based in St. Louis, Missouri, which has developed a novel serum-based biomarker technology – circulating fatty acid synthase (cFAS) – that can diagnose cardiovascular and peripheral artery disease with high accuracy in both women and men.
  • Foxo, headquartered in Brisbane, Australia, serves as an interoperable tool designed to enhance clinical collaboration across the healthcare ecosystem. It enables secure, two-way communication with features such as video, voice, screen share, file sharing, and real-time messaging.
  • San Francisco-based Knowtex, an artificial intelligence-powered software writes medical documentation for you and assigns correct codes to ensure proper reimbursement.
  • NeuroBell, from Cork, Ireland, which is working on a novel medical device providing portable EEG monitoring with real-time and automated neonatal seizure alerts at the bedside.
  • Perth, Australia-based OncoRes Medical that's developing an intraoperative imaging technology to provide surgeons with real-time assessment of tissue microstructure.
  • From right here in Houston, Steradian Technologies, which has created RUMI, the first noninvasive, fully portable infectious disease diagnostic that costs the price of a latte. It uses novel photon-based detection to collect and diagnose infectious diseases in breath within 30 seconds.
  • TYBR, also based in Houston, created a flowable extracellular matrix hydrogel, crafted to safeguard healing tendons and ligaments from scarring and adhesions. The company originated from the TMCi’s Biodesign fellowship and now has entered into the Accelerator for HealthTech to sharpen its regulatory strategy, particularly in anticipation of FDA conversations.

Applications for the next Accelerator for HealthTech will open in May of this year.

Meet the latest global health tech startups to get an invite to Houston from TMC Innovation. Photo via tmc.edu

TMC names latest cohort of health tech startups for upcoming bootcamp

headed to Houston

The Texas Medical Center's innovation arm has again invited a set of health tech startups to mix and mingle with potential partners, investors, and customers in hopes to score a place in the HealthTech Accelerator.

For the 17th time, the TMC Innovation Factory is hosting its HealthTech Accelerator — starting first with announcing its bootcamp cohort, a process that includes bringing all 10 companies to Houston for valuable networking. A selection of the bootcamp will be invited into the full accelerator that will run into next spring.

The 10 selected companies with solutions from heart failure to chronic respiratory disease and more, according to TMC, include:

  • Acorai, from Stockholm, Sweden, which is developing a first-of-its-kind, hand-held, scalable medical device for non-invasive intracardiac pressure monitoring to improve heart failure management for more than 64 million patients worldwide.
  • Singapore-based Aevice Health, a connected care platform powered by the world’s smallest smart wearable stethoscope to support chronic respiratory disease patients through their continuum of care.
  • AirSeal, based in St. Louis, Missouri, which has developed a novel serum-based biomarker technology – circulating fatty acid synthase (cFAS) – that can diagnose cardiovascular and peripheral artery disease with high accuracy in both women and men.
  • Candlelit Care, a Charlotte, North Carolina-based point-of-care digital platform focused on the prevention of perinatal mental and anxiety disorders (PMADs) among Black women and birthing parents.
  • San Francisco-based Knowtex, an artificial intelligence-powered software writes medical documentation for you and assigns correct codes to ensure proper reimbursement.
  • NeuroBell, from Cork, Ireland, which is working on a novel medical device providing portable EEG monitoring with real-time and automated neonatal seizure alerts at the bedside.
  • Perth, Australia-based OncoRes Medical that's developing an intraoperative imaging technology to provide surgeons with real-time assessment of tissue microstructure.
  • From right here in Houston, Steradian Technologies, which has created RUMI, the first noninvasive, fully portable infectious disease diagnostic that costs the price of a latte. It uses novel photon-based detection to collect and diagnose infectious diseases in breath within 30 seconds.
  • Foxo, headquartered in Brisbane, Australia, serves as an interoperable tool designed to enhance clinical collaboration across the healthcare ecosystem. It enables secure, two-way communication with features such as video, voice, screen share, file sharing, and real-time messaging.
  • Thrive Health’s, from Vancouver, Canada, is a platform is a low-code framework for designing and delivering patient engagement solutions. Create tools that enable partners to close healthcare gaps quickly, strengthen care relationships, and improve patient experience and outcomes.

TMC Innovation's last bootcamp cohort was announced in May. The organization also recently named 16 digital health and medical device startups from the United Kingdom to a new accelerator formed in partnership with Innovate UK.

Earlier this fall, TMC formed a strategic partnership, or BioBridge, with the Netherlands.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.