Here are the eight companies currently being accelerated by Texas Medical Center Innovation. Photo courtesy of TMC

The Texas Medical Center Innovation has named its new cohort of health tech companies it's currently accelerating.

This first batch of companies for 2024 was selected from last fall's TMC Bootcamp. Eight of the 10 startups from the bootcamp have moved on to the Accelerator for HealthTech.

"Hailing from diverse corners of the globe—from the tech corridors of Texas and California to Ireland and Australia—these companies converge with a shared mission—to move healthcare forward," Devin Dunn, head of the Accelerator for Health Tech, writes in a TMC blog post. "Through personalized mentorship and guidance, these eight companies are able to navigate complex challenges and refine their strategies, while leveraging the expertise of Texas Medical Center ecosystem to validate their innovations and drive real-world impact."

The selected companies include:

  • AcorAI, from Stockholm, Sweden, which is developing a first-of-its-kind, hand-held, scalable medical device for non-invasive intracardiac pressure monitoring to improve heart failure management for more than 64 million patients worldwide.
  • AirSeal, based in St. Louis, Missouri, which has developed a novel serum-based biomarker technology – circulating fatty acid synthase (cFAS) – that can diagnose cardiovascular and peripheral artery disease with high accuracy in both women and men.
  • Foxo, headquartered in Brisbane, Australia, serves as an interoperable tool designed to enhance clinical collaboration across the healthcare ecosystem. It enables secure, two-way communication with features such as video, voice, screen share, file sharing, and real-time messaging.
  • San Francisco-based Knowtex, an artificial intelligence-powered software writes medical documentation for you and assigns correct codes to ensure proper reimbursement.
  • NeuroBell, from Cork, Ireland, which is working on a novel medical device providing portable EEG monitoring with real-time and automated neonatal seizure alerts at the bedside.
  • Perth, Australia-based OncoRes Medical that's developing an intraoperative imaging technology to provide surgeons with real-time assessment of tissue microstructure.
  • From right here in Houston, Steradian Technologies, which has created RUMI, the first noninvasive, fully portable infectious disease diagnostic that costs the price of a latte. It uses novel photon-based detection to collect and diagnose infectious diseases in breath within 30 seconds.
  • TYBR, also based in Houston, created a flowable extracellular matrix hydrogel, crafted to safeguard healing tendons and ligaments from scarring and adhesions. The company originated from the TMCi’s Biodesign fellowship and now has entered into the Accelerator for HealthTech to sharpen its regulatory strategy, particularly in anticipation of FDA conversations.

Applications for the next Accelerator for HealthTech will open in May of this year.

Meet the latest global health tech startups to get an invite to Houston from TMC Innovation. Photo via tmc.edu

TMC names latest cohort of health tech startups for upcoming bootcamp

headed to Houston

The Texas Medical Center's innovation arm has again invited a set of health tech startups to mix and mingle with potential partners, investors, and customers in hopes to score a place in the HealthTech Accelerator.

For the 17th time, the TMC Innovation Factory is hosting its HealthTech Accelerator — starting first with announcing its bootcamp cohort, a process that includes bringing all 10 companies to Houston for valuable networking. A selection of the bootcamp will be invited into the full accelerator that will run into next spring.

The 10 selected companies with solutions from heart failure to chronic respiratory disease and more, according to TMC, include:

  • Acorai, from Stockholm, Sweden, which is developing a first-of-its-kind, hand-held, scalable medical device for non-invasive intracardiac pressure monitoring to improve heart failure management for more than 64 million patients worldwide.
  • Singapore-based Aevice Health, a connected care platform powered by the world’s smallest smart wearable stethoscope to support chronic respiratory disease patients through their continuum of care.
  • AirSeal, based in St. Louis, Missouri, which has developed a novel serum-based biomarker technology – circulating fatty acid synthase (cFAS) – that can diagnose cardiovascular and peripheral artery disease with high accuracy in both women and men.
  • Candlelit Care, a Charlotte, North Carolina-based point-of-care digital platform focused on the prevention of perinatal mental and anxiety disorders (PMADs) among Black women and birthing parents.
  • San Francisco-based Knowtex, an artificial intelligence-powered software writes medical documentation for you and assigns correct codes to ensure proper reimbursement.
  • NeuroBell, from Cork, Ireland, which is working on a novel medical device providing portable EEG monitoring with real-time and automated neonatal seizure alerts at the bedside.
  • Perth, Australia-based OncoRes Medical that's developing an intraoperative imaging technology to provide surgeons with real-time assessment of tissue microstructure.
  • From right here in Houston, Steradian Technologies, which has created RUMI, the first noninvasive, fully portable infectious disease diagnostic that costs the price of a latte. It uses novel photon-based detection to collect and diagnose infectious diseases in breath within 30 seconds.
  • Foxo, headquartered in Brisbane, Australia, serves as an interoperable tool designed to enhance clinical collaboration across the healthcare ecosystem. It enables secure, two-way communication with features such as video, voice, screen share, file sharing, and real-time messaging.
  • Thrive Health’s, from Vancouver, Canada, is a platform is a low-code framework for designing and delivering patient engagement solutions. Create tools that enable partners to close healthcare gaps quickly, strengthen care relationships, and improve patient experience and outcomes.

TMC Innovation's last bootcamp cohort was announced in May. The organization also recently named 16 digital health and medical device startups from the United Kingdom to a new accelerator formed in partnership with Innovate UK.

Earlier this fall, TMC formed a strategic partnership, or BioBridge, with the Netherlands.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”