AccessPath is a novel, affordable, slide-free pathology system that helps surgeons determine if they have completely removed tumors during surgery. Photo via Getty Images

The Biden-Harris administration is deploying $150 million as a part of its Cancer Moonshot initiative, and a research team led by Rice University is getting a slice of that pie.

AccessPath is a novel, affordable, slide-free pathology system that helps surgeons determine if they have completely removed tumors during surgery. Rebecca Richards-Kortum, a Rice bioengineering professor and director of the Rice360 Institute for Global Health Technologies, is the lead PI on the project that is receiving up to $18 million over five years from the Advanced Research Projects Agency for Health (ARPA-H).

“Because of its low cost, high speed, and automated analysis, we believe AccessPath can revolutionize real-time surgical guidance, greatly expanding the range of hospitals able to provide accurate intraoperative tumor margin assessment and improving outcomes for all cancer surgery patients,” Richards-Kortum says in a news release.

The project is focused on two types of cancer, breast and head and neck cancer, and Ashok Veeraraghavan, chair of Rice’s Department of Electrical and Computer Engineering and a professor of electrical and computer engineering and computer science, is a co-PI and Tomasz Tkaczyk, a professor of bioengineering and electrical and computer engineering at Rice, is also a collaborator on the project.

AccessPath is addressing the challenge surgeons face of identifying the margin where tumor tissue ends and health tissue begins when removing tumors. The project not only hopes to provide a more exact solution but do so in an affordable way.

“Precise margin assessment is key to the oncologic success of any cancer operation,” adds Dr. Ana Paula Refinetti, an associate professor in the Department of Breast Surgical Oncology at The University of Texas MD Anderson Cancer Center and one of the lead surgeons PIs on the project. “The development of a new low-cost technology that enables immediate margin assessment could transform the landscape of surgical oncology — particularly in low-resource settings, reducing the number of repeat interventions, lowering cancer care costs and improving patient outcomes.”

The project optimizing margin identification with a fast-acting, high-resolution microscope, effective fluorescent stains for dying tumor margins, and artificial intelligence algorithms.

AccessPath is a collaboration between Rice and MD Anderson Cancer Center, other awardees in the grant include the University of Texas Health School of Dentistry, Duke University, Carnegie Mellon University and 3rd Stone Design.

“AccessPath is exactly the kind of life-changing research and health care innovation we are proud to produce at Rice, where we’re committed to addressing and solving the world’s most pressing medical issues,” Ramamoorthy Ramesh, Rice’s executive vice president for research, says in the release. “Partnering with MD Anderson on this vital work underscores the importance of such ongoing collaborations with our neighbors in the world’s largest medical center. I am thrilled for Rebecca and her team; it’s teamwork that makes discoveries like these possible.”

Rebecca Richards-Kortum, a Rice bioengineering professor and director of the Rice360 Institute for Global Health Technologies, is the lead PI on the project. Photo by Jeff Fitlow/Rice University

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston space data startup to compute real-time insights in orbit

A Houston space startup has announced a new partnership that will “push the boundaries of real-time data processing and insight delivery.”

Little Place Labs is collaborating with San Francisco-based Loft Orbital to pair its low-latency operations, using its space infrastructure with LittlePlace Labs’ cutting-edge analytics. This will enhance maritime domain awareness under a US Air Force Phase 2 STTR by deploying Little Place Labs software to Loft’s YAM-6 satellite as a virtual mission.

“Our on-orbit data processing solutions, paired with Loft’s satellite platform, allow us to derive and deliver insights in near real-time for time-sensitive situations,” Little Place Labs Co-founder and CEO Bosco Lai says in a news release. “These insights are critical to commercial and national security stakeholders, including those in the US government. This collaboration highlights the new space age, where companies like Little Place Labs and Loft come together, integrating our solutions into powerful capabilities.”

Loft plans to deploy Little Place Labs’ applications to its constellation of satellites. Each satellite node will be equipped with a sensing resource like visible and infrared images, and configurable software-defined radios. The satellite nodes make up Loft’s space infrastructure, which will include onboard edge compute and connectivity resources. The infrastructure will be used to build and complete complex missions. The low-latency maritime domain awareness is an example of the complex challenges that won’t involve deployment of new hardware. This aligns with both companies goals to address real-time data solutions and rapid responses in space.

"We are proud to support customers like Little Place Labs in pushing the limits of what’s possible with low latency applications and onboard edge compute,” Mitchell Scher, director of business development at Loft, adds. “While we’re providing the infrastructure to support these kinds of low-latency operations, it is only as useful as the applications our customers deploy and the operational value they produce for their end users.”

Little Place Labs will be working with another military organization, as they were recently selected by AFWERX for a STTR Phase II contract in the amount of $1.8 million dollars. The focus will be “revolutionizing space- based ISR through decentralized systems,” per a news release. This will be done in-orbit ML computing for near-real-time intelligence to address challenges in the Department of the Air Force.

Another recent collaboration sees their Orbitfy software suite on LEOcloud’s Space Edge infrastructure as a Service (IaaS). This will help facilitate “scalable real-time data processing and analysis directly on spacecraft, significantly reducing downlink costs and enabling faster mission-critical insight,” according to a news release. The Orbitfy Software suite combines data preprocessing capabilities with low-SWaP machine learning applications that is designed for deployment directly on space infrastructures and satellites.

Little Place Labs is also using its satellite real-time solutions to help address wildfires. They were one of four companies part of the completion of the first round of the XPRIZE Autonomous Wildfire Challenge by the coalition Fire Foresight.

Texas tumbles to No. 36 in new 2024 ranking of best states to live

this just in

Texas is being ruled out as one of the top states to live in the country, according to a new livability study by WalletHub. The Lone Star State ranked No. 36 out of all 50 states.

WalletHub ranked every state based on 51 metrics in five major categories: Affordability, economy, education and health, quality of life, and safety. Factors that were considered include a state's housing affordability, the share of the population living in poverty, wealth gaps, the quality of the public school system, road quality, among others.

Texas' not-so-stellar ranking has now branded the state as the 15th worst state to live in the nation. For comparison, Massachusetts ranked as the No. 1 best state to live in, followed by Florida (No. 2), New Jersey (No. 3), Utah (No. 4), and New Hampshire (No. 5).

In a confusing ranking of states with the best economies, Texas placed No. 36, despite WalletHub's earlier 2024 report that declared Texas had the fourth best economy in the nation.

Here's how the study broke down Texas' ranking across the remaining four key dimensions:

  • No. 8 – Quality of life rank
  • No. 34 – Safety rank
  • No. 34 – Affordability rank
  • No. 38 – Education and health rank

The study's findings show Texas has the fifth lowest rate of homeownership nationwide, ranking No. 46 out of all 50 states. In the ranking of each state's population aged 25 and older who have earned a high school diploma or more, Texas ranked No. 49. The state similarly ranked at the bottom of the list for its proportion of the population that has insurance (No. 50). Texas workers also have the second-longest average work week, placing the state at No. 48 (tied with Wyoming) in the national comparison of average weekly work hours.

The only ranking that Texas excelled in (surprisingly) was the restaurants metric. Texas landed in a four-way tie with California, New York, and Florida for the No. 1 most restaurants per capita.

Other WalletHub studies have supported the idea that Texas may not be the best state for putting down roots. Most recently, the state landed a middling rank as the No. 29 best public school system in the U.S., and it ranked No. 28 in WalletHub's annual report of the "Best and Worst States for Military Retirees."

Moreover, Texas ranked 28th in a new report on best states for the arts by SmileHub, a nonprofit tech company founded by the same CEO as WalletHub.

"When deciding on a place to move, you should first consider financial factors like the cost of living, housing prices and job availability," said WalletHub analyst Cassandra Happe. "Many states have strong economies, though, so you should also consider a wide variety of other factors, such as how where you live will impact your health and safety, and whether you will have adequate access to activities that you enjoy. If you have children, a robust education system is also key."

At the opposite end of the study, Louisiana landed at the bottom of the national ranking as the worst state to live in for 2024. New Mexico (No. 49), Arkansas (No. 48), Alaska (No. 47), and Nevada (No. 46) round out the five worst states.

The full report can be found on wallethub.com.

———

This article originally ran on CultureMap.

Houston 3D printing co. moves forward to next phase of NSF accelerator

sustainability in mind

An innovative project led by Houston-founded re:3D Inc. is one of six to move forward to the next phase of the National Science Foundation's Convergence Accelerator that aims to drive solutions with societal and economic impact.

The sustainable 3D printer company will receive up to $5 million over three years as it advances on to Phase 2 of the program for its ReCreateIt project, according to a statement from the NSF. Co-funded by Australia's national science agency, the Commonwealth Scientific and Industrial Research Organisation, or CSIRO, ReCreateIt enables low-income homeowners to design sustainable home goods using recycled plastic waste through 3D-printing at its net-zero manufacturing lab.

The project is in partnership with Austin Habitat for Humanity ReStores and researchers from the University of Wollongong and Western Sydney University. CSIRO is funding the Australian researchers.

In Phase II the teams will receive training on product development, intellectual property, financial resources, sustainability planning and communications and outreach. The goal of the accelerator is to promote a "circular economy," in which resources are reused, repaired, recycled or refurbished for as long as possible.

"Progress toward a circular economy is vital for our planet's health, but it is a complex challenge to tackle," Douglas Maughan, head of the NSF Convergence Accelerator program, said in the statement. "The NSF Convergence Accelerator program is bringing together a wide range of expertise to develop critical, game-changing solutions to transition toward a regenerative growth model that reduces pressure on natural resources, creates sustainable growth and jobs, drastically reduces waste and ultimately has a positive impact on our environment and society. Phase 2 teams are expected to have strong partnerships to ensure their solutions are sustained beyond NSF support."

Other teams that are moving forward in the accelerator include:

  • FUTUR-IC: A global microchip sustainability alliance led by MIT
  • PFACTS: Led by IBM's Almaden Research Center and aiming to replace, redesign and remediate fluorine-containing per- and polyfluoroalkyl substances (PFAS)
  • SOLAR: A team led by Battelle Memorial Institute using photovoltaic circularity to develop the technology needed to achieve sustainable solar recycling
  • SpheriCity: A cross-sector tool that examines how plastics, organics and construction and demolition materials flow through local communities developed by the University of Georgia Research Foundation Inc.
  • Topological Electric: Another MIT-led team, this group aims to develop electronic and energy-harvesting device prototypes based on topological materials.

Re:3d and 15 other teams were first named to the Convergence Accelerator in 2022 with a total investment of $11.5 million. At the end of Phase 1, the teams participated in a formal Phase 2 proposal and pitch, according to the NSF. The Convergence Accelerator was launched in 2019 as part of the NSF's Directorate for Technology, Innovation and Partnerships.

This is the latest project from re:3D to land national attention and funding. Last year the company was one of 12 to receive up to $850,000 from NASA's SBIR Ignite pilot for its project that aimed to develop a recycling system that uses a 3D printer to turn thermoplastic waste generated in orbit into functional and useful objects, according to the project's proposal.

In 2022, it was also among the winners of an inaugural seed fund expo from the U.S. Small Business Administration. It also earned the prestigious Tibbetts Award from the SBA in 2021. The award honors small businesses that are at the forefront of technology.

Re:3D Inc. was founded in 2013 by NASA contractors Samantha Snabes and Matthew Fiedler and is based in Clear Lake. It's known for its GigaBot 3D printer, which uses recycled materials to create larger devices. The company announced its new Austin headquarters earlier this year.