Innovators in immunotherapy, precision drug discovery, monoclonal antibodies, and diagnostic and therapeutic technologies have joined TMC's Accelerator for Cancer Therapeutics. Photo courtesy TMC.

Texas Medical Center Innovation has named more than 50 health care innovators to the fifth cohort of its Accelerator for Cancer Therapeutics (ACT).

The group specializes in immunotherapy, precision drug discovery, monoclonal antibodies, and diagnostic and therapeutic technologies, according to a statement from TMC.

During the nine-month ACT program, participants will enjoy access to a network of mentors, grant-writing support, chemistry resources, and the entrepreneur-in-residence program. The program is designed to equip participants with the ability to secure investments, develop partnerships, and advance the commercialization of cancer therapeutics in Texas.

“With over 35 million new cancer cases predicted by 2050, the urgency to develop safer, more effective, and personalized treatments cannot be overstated,” Tom Luby, chief innovation officer at Texas Medical Center, said in a news release.

Members of the new cohort are:

  • Alexandre Reuben, Kunal Rai, Dr. Cassian Yee, Dr. Wantong Yao, Dr. Haoqiang Ying, Xiling Shen, and Zhao Chen, all of the University of Texas MD Anderson Cancer Center
  • Dr. Andre Catic and Dr. Martin M. Matzuk, both of the Baylor College of Medicine
  • Cynthia Hu and Zhiqiang An, both of UTHealth Houston
  • Christopher Powala, Aaron Sato, and Mark de Souza, all of ARespo Biopharma
  • Daniel Romo, Dr. Susan Bates, and Ken Hull, all of Baylor University
  • Eugene Sa & Minseok Kim, both of CTCELLS
  • Gomika Udugamasooriya and Nathaniel Dawkins, both of the University of Houston
  • Dr. Hector Alila of Remunity Therapeutics
  • Iosif Gershteyn and Victor Goldmacher, both of ImmuVia
  • João Seixas, Pedro Cal, and Gonçalo Bernardes, all of TargTex
  • Ken Hsu and Yelena Wetherill, both of the University of Texas at Austin
  • Luis Martin and Dr. Alberto Ocaña, both of C-Therapeutics
  • Dr. Lynda Chin, Dr. Keith Flaherty, Dr. Padmanee Sharma, James Allison, and Ronan O’Hagan, all of Project Crest/Apricity Health
  • Michael Coleman and Shaker Reddy, both of Metaclipse Therapeutics
  • Robert Skiff and Norman Packard, both of 3582.ai
  • Rolf Brekken, Uttam Tambar, Ping Mu, Su Deng, Melanie Rodriguez, and Alexander Busse, all of UT Southwestern Medical Center
  • Ryan Swoboda and Maria Teresa Sabrina Bertilaccio, both of NAVAN Technologies
  • Shu-Hsia Chen and Ping-Ying Pan, both of Houston Methodist
  • Thomas Kim, Philipp Mews, and Eyal Gottlieb, all of ReEngage Therapeutics
The ACT launched in 2021 and has had 77 researchers and companies participate. The group has collectively secured more than $202 million in funding from the NIH, CPRIT and venture capital, according to TMC.
CrossBridge Bio, formed during the TMC Innovation’s Accelerator for Cancer Therapeutics program, closed a $10 million seed round led by TMC Venture Fund and CE-Ventures. Photo via Getty Images

Houston biotech startup secures $10M seed round to propel cancer-fighting therapy from bench to bedside

fresh funding

A Houston biotech company based off research out of UTHealth Houston has raised seed funding to continue developing its cancer-fighting therapeutic.

CrossBridge Bio, formed during the TMC Innovation’s Accelerator for Cancer Therapeutics program, closed a $10 million seed round led by TMC Venture Fund and Crescent Enterprises' VC arm, CE-Ventures. The round also included participation from Portal Innovations, Alexandria Venture Investments, Linden Lake Labs, and several pre-seed investors.

“We are thrilled to have the support of such experienced investors who share our vision of bringing transformative cancer therapies to patients in need,” Michael Torres, CEO of CrossBridge Bio, says in a news release. Torres served as an entrepreneur in residence of ACT.

The company is working on the next-generation of antibody-drug conjugates (ADC) therapeutics that process dual payloads as targeted treatments for a set of challenging cancers. The innovative treatment is based on research from UTHealth experts Dr. Kyoji Tsuchikama and Dr. Zhiqiang An.

“Our dual-payload ADC technology is designed to deliver synergistic therapeutic effects using highly stable linkers that ensure payload release only within the targeted cancer cells, thereby maximizing their therapeutic effectiveness while minimizing the liabilities associated with uptake in unintended tissues, as seen with many of today’s cancer treatments," Torres continues.

He explains that the funding will toward advancing CrossBridge's first development candidate, CBB-120, into preclinical non-GLP toxicology studies in addition to derisking the company’s proprietary linker technology with dual-payload applications, per the release.

As a result of the raise, William McKeon, president and CEO of the Texas Medical Center, and Damir Illich, manager of life sciences of CE-Ventures, will join CrossBridge Bio’s board of directors.

“We are proud to back CrossBridge Bio in their mission to develop the next generation of cancer therapies,” McKeon says in the release. “Their dual-payload ADCs are designed to deliver targeted drug release within cancer cells with greater stability, precision, and control. These breakthrough advancements have the potential to change patients’ lives worldwide and we look forward to helping drive their development.”

TMCi named its 2024 Accelerator for Cancer Therapeutics cohort.

TMC names 2024 cohort of cancer treatment innovators

ready to grow

For the fourth year, Texas Medical Center Innovation has named its annual cohort of Texas health tech innovators working on promising cancer therapeutics.

TMCi named its 2024 Accelerator for Cancer Therapeutics cohort last week, and the 23 Texas researchers and companies selected will undergo a nine-month program that will provide them with mentorship and programming, as well as open doors to potential investors and strategic partners.

“The ACT program provides a bridge to commercialization in Texas by surrounding innovators with strategic mentorship, milestone development, and a network of resources to move their projects forward,” Emily Reiser, associate director of TMC Innovation, says in a news release. "We are excited to welcome this year's cohort and to continue enabling participants to advance their solutions to treat cancer."

The program has accelerated 76 researchers and companies to date, many of which — like March Biosciences and Mongoose Bio — have gone on to secure $130 million in funding from venture capitalists and grant funding.

“Our program has cultivated a dynamic ecosystem where partners, researchers, and inventors, who have been part of the journey since its inception and received various forms of funding, continue to propel their life-saving products and technologies forward," Ahmed AlRawi, program manager of ACT, says in the release. "Our 2024 cohort represents our most diverse cohort to date, including eight companies led by women entrepreneurs. Additionally, we are particularly proud that the cohort includes a blend of new and recurring organizations that have leveraged this opportunity in the past to extend their work and continue the momentum to build off the successes of our previous years.”

The 2024 participants are:

  • Alexandre Reuben of UT-MD Anderson Cancer Center
  • Betty Kim & Jiang Wen of UT-MD Anderson Cancer Center
  • Bin He of Houston Methodist
  • Daniel Kiss & John Cooke of PeakRNA at Houston Methodist
  • Hongjun Liang of Texas Tech-Lubbock
  • Jacob Goell & Isaac Hilton of Mercator Biosciences at Rice University
  • Jay Hartenbach & Matthew Halpert of Diakonos Oncology Corp.
  • Kathryn O’Donnell of UT-Southwestern
  • Maralice Conacci Sorrell of UT-Southwestern
  • Neeraj Saini of UT-MD Anderson Cancer Center
  • Neil Thapar of Barricade Therapeutics Corp.
  • Nina Keshavarzi of Celine Biotechnologies
  • Raphael G. Ognar & Henri Bayle of NKILT Therapeutics Inc.
  • Richard Austin & Michael Abrahamson of Reglagene Inc.
  • Tim Peterson & Joppe Nieuwenhuis of Bioio Inc.
  • Todd Aguilera & Eslam Elghonaimy of UT-Southwestern
  • Venkata Lokesh Battula of Siddhi Therapeutics Inc. at UT-MD Anderson Cancer Center
  • Weei-Chin Lin & Fang-Tsyr Lin of Baylor College of Medicine
  • Yong Li & Dongxiao Feng of Sotla Therapeutics at Baylor College of Medicine
  • Anil Sood & Zhiqiang An of UT-MD Anderson Cancer Center
  • Narendra Kumar & Jayshree Mishra of Texas A&M-College Station
  • Tao Wang of NightStar Biotechnologies Inc. at UT-Southwestern
  • Jian Hu of UT-MD Anderson Cancer Center
Enrique Gomez joins the Houston Innovators Podcast to discuss Houston as an oncology innovation hub. Photo via TMC.edu

How Houston is emerging as a leader for oncology innovation, according to this expert

Houston innovators podcast episode 114

Houston is currently establishing itself as a hub for health care innovation — and Enrique Gomez should know. He's worked in the field of biopharmaceuticals across the continent.

As entrepreneur in residence at Texas Medical Center Innovation's Accelerator for Cancer Therapeutics, he works with early stage startups and researchers. However, for decades he's worked in a much later stage of drug development, holding leadership positions at Takada in Latin America and Shire in Boston.

"Texas is very well recognized for cancer therapeutics," Gomez says on this week's episode of the Houston Innovators Podcast. "There's a lot of research going on. These researchers are looking at every angle — every possible strategy to tackle cancer."

At ACT, Gomez connects the startups or instigators with the resources they need to get their life-saving solutions to market. With cancer, there's not one thing that's going to work. There have to be options for treating cancer.

"Cancer is very heterogeneous. Not one strategy will be the single silver bullet to overcome the disease," Gomez says. "We are talking about personalized medicine. Every person is different and every cancer in every patient is different. It will require a number of approaches to overcome the health situation."

Thankfully, through TMC's ACT and the numerous research institutions working on the future of oncology, Houston's a great spot to move that needle.

"Houston is a place where everyone looks at when it comes to novel research and approaches to treating cancer," Gomez says. "The landscape here is going to be accelerated because we see much more collaboration between the founding institutions — and that's a very important element of growth. Houston has no comparison to any other place in terms of what's going on here and the level and quality of research."

He shares more on how COVID-19 has affected drug development and research — as well as what's next for his own career — on the podcast. Listen to the full interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

​Planned UT Austin med center, anchored by MD Anderson, gets $100M gift​

med funding

The University of Texas at Austin’s planned multibillion-dollar medical center, which will include a hospital run by Houston’s University of Texas MD Anderson Cancer Center, just received a $100 million boost from a billionaire husband-and-wife duo.

Tench Coxe, a former venture capitalist who’s a major shareholder in chipmaking giant Nvidia, and Simone Coxe, co-founder and former CEO of the Blanc & Otus PR firm, contributed the $100 million—one of the largest gifts in UT history. The Coxes live in Austin.

“Great medical care changes lives,” says Simone Coxe, “and we want more people to have access to it.”

The University of Texas System announced the medical center project in 2023 and cited an estimated price tag of $2.5 billion. UT initially said the medical center would be built on the site of the Frank Erwin Center, a sports and entertainment venue on the UT Austin campus that was demolished in 2024. The 20-acre site, north of downtown and the state Capitol, is near Dell Seton Medical Center, UT Dell Medical School and UT Health Austin.

Now, UT officials are considering a bigger, still-unidentified site near the Domain mixed-use district in North Austin, although they haven’t ruled out the Erwin Center site. The Domain development is near St. David’s North Medical Center.

As originally planned, the medical center would house a cancer center built and operated by MD Anderson and a specialty hospital built and operated by UT Austin. Construction on the two hospitals is scheduled to start this year and be completed in 2030. According to a 2025 bid notice for contractors, each hospital is expected to encompass about 1.5 million square feet, meaning the medical center would span about 3 million square feet.

Features of the MD Anderson hospital will include:

  • Inpatient care
  • Outpatient clinics
  • Surgery suites
  • Radiation, chemotherapy, cell, and proton treatments
  • Diagnostic imaging
  • Clinical drug trials

UT says the new medical center will fuse the university’s academic and research capabilities with the medical and research capabilities of MD Anderson and Dell Medical School.

UT officials say priorities for spending the Coxes’ gift include:

  • Recruiting world-class medical professionals and scientists
  • Supporting construction
  • Investing in technology
  • Expanding community programs that promote healthy living and access to care

Tench says the opportunity to contribute to building an institution from the ground up helped prompt the donation. He and others say that thanks to MD Anderson’s participation, the medical center will bring world-renowned cancer care to the Austin area.

“We have a close friend who had to travel to Houston for care she should have been able to get here at home. … Supporting the vision for the UT medical center is exactly the opportunity Austin needed,” he says.

The rate of patients who leave the Austin area to seek care for serious medical issues runs as high as 25 percent, according to UT.

New Rice Brain Institute partners with TMC to award inaugural grants

brain trust

The recently founded Rice Brain Institute has named the first four projects to receive research awards through the Rice and TMC Neuro Collaboration Seed Grant Program.

The new grant program brings together Rice faculty with clinicians and scientists at The University of Texas Medical Branch, Baylor College of Medicine, UTHealth Houston and The University of Texas MD Anderson Cancer Center. The program will support pilot projects that address neurological disease, mental health and brain injury.

The first round of awards was selected from a competitive pool of 40 proposals, and will support projects that reflect Rice Brain Institute’s research agenda.

“These awards are meant to help teams test bold ideas and build the collaborations needed to sustain long-term research programs in brain health,” Behnaam Aazhang, Rice Brain Institute director and co-director of the Rice Neuroengineering Initiative, said in a news release.

The seed funding has been awarded to the following principal investigators:

  • Kevin McHugh, associate professor of bioengineering and chemistry at Rice, and Peter Kan, professor and chair of neurosurgery at the UTMB. McHugh and Kan are developing an injectable material designed to seal off fragile, abnormal blood vessels that can cause life-threatening bleeding in the brain.
  • Jerzy Szablowski, assistant professor of bioengineering at Rice, and Jochen Meyer, assistant professor of neurology at Baylor. Szablowski and Meyer are leading a nonsurgical, ultrasound approach to deliver gene-based therapies to deep brain regions involved in seizures to control epilepsy without implanted electrodes or invasive procedures.
  • Juliane Sempionatto, assistant professor of electrical and computer engineering at Rice, and Aaron Gusdon, associate professor of neurosurgery at UTHealth Houston. Sempionatto and Gusdon are leading efforts to create a blood test that can identify patients at high risk for delayed brain injury following aneurysm-related hemorrhage, which could lead to earlier intervention and improved outcomes.
  • Christina Tringides, assistant professor of materials science and nanoengineering at Rice, and Sujit Prabhu, professor of neurosurgery at MD Anderson, who are working to reduce the risk of long-term speech and language impairment during brain tumor removal by combining advanced brain recordings, imaging and noninvasive stimulation.

The grants were facilitated by Rice’s Educational and Research Initiatives for Collaborative Health (ENRICH) Office. Rice says that the unique split-funding model of these grants could help structure future collaborations between the university and the TMC.

The Rice Brain Institute launched this fall and aims to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders. Last month, the university's Shepherd School of Music also launched the Music, Mind and Body Lab, an interdisciplinary hub that brings artists and scientists together to study the "intersection of the arts, neuroscience and the medical humanities." Read more here.

Your data center is either closer than you think or much farther away

houston voices

A new study shows why some facilities cluster in cities for speed and access, while others move to rural regions in search of scale and lower costs. Based on research by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard).

Key findings:

  • Third-party colocation centers are physical facilities in close proximity to firms that use them, while cloud providers operate large data centers from a distance and sell access to virtualized computing resources as on‑demand services over the internet.
  • Hospitals and financial firms often require urban third-party centers for low latency and regulatory compliance, while batch processing and many AI workloads can operate more efficiently from lower-cost cloud hubs.
  • For policymakers trying to attract data centers, access to reliable power, water and high-capacity internet matter more than tax incentives.

Recent outages and the surge in AI-driven computing have made data center siting decisions more consequential than ever, especially as energy and water constraints tighten. Communities invest public dollars on the promise of jobs and growth, while firms weigh long-term commitments to land, power and connectivity.

Against that backdrop, a critical question comes into focus: Where do data centers get built — and what actually drives those decisions?

A new study by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard Business School) provides the first large-scale statistical analysis of data center location strategies across the United States. It offers policymakers and firms a clearer starting point for understanding how different types of data centers respond to economic and strategic incentives.

Forthcoming in the journal Strategy Science, the study examines two major types of infrastructure: third-party colocation centers that lease server space to multiple firms, and hyperscale cloud centers owned by providers like Amazon, Google and Microsoft.

Two Models, Two Location Strategies

The study draws on pre-pandemic data from 2018 and 2019, a period of relative geographic stability in supply and demand. This window gives researchers a clean baseline before remote work, AI demand and new infrastructure pressures began reshaping internet traffic patterns.

The findings show that data centers follow a bifurcated geography. Third-party centers cluster in dense urban markets, where buyers prioritize proximity to customers despite higher land and operating costs. Cloud providers, by contrast, concentrate massive sites in a small number of lower-density regions, where electricity, land and construction are cheaper and economies of scale are easier to achieve.

Third-party data centers, in other words, follow demand. They locate in urban markets where firms in finance, healthcare and IT value low latency, secure storage, and compliance with regulatory standards.

Using county-level data, the researchers modeled how population density, industry mix and operating costs predict where new centers enter. Every U.S. metro with more than 700,000 residents had at least one third-party provider, while many mid-sized cities had none.

ImageThis pattern challenges common assumptions. Third-party facilities are more distributed across urban America than prevailing narratives suggest.

Customer proximity matters because some sectors cannot absorb delay. In critical operations, even slight pauses can have real consequences. For hospital systems, lag can affect performance and risk exposure. And in high-frequency trading, milliseconds can determine whether value is captured or lost in a transaction.

“For industries where speed is everything, being too far from the physical infrastructure can meaningfully affect performance and risk,” Pan Fang says. “Proximity isn’t optional for sectors that can’t absorb delay.”

The Economics of Distance

For cloud providers, the picture looks very different. Their decisions follow a logic shaped primarily by cost and scale. Because cloud services can be delivered from afar, firms tend to build enormous sites in low-density regions where power is cheap and land is abundant.

These facilities can draw hundreds of megawatts of electricity and operate with far fewer employees than urban centers. “The cloud can serve almost anywhere,” Pan Fang says, “so location is a question of cost before geography.”

The study finds that cloud infrastructure clusters around network backbones and energy economics, not talent pools. Well-known hubs like Ashburn, Virginia — often called “Data Center Alley” — reflect this logic, having benefited from early network infrastructure that made them natural convergence points for digital traffic.

Local governments often try to lure data centers with tax incentives, betting they will create high-tech jobs. But the study suggests other factors matter more to cloud providers, including construction costs, network connectivity and access to reliable, affordable electricity.

When cloud centers need a local presence, distance can sometimes become a constraint. Providers often address this by working alongside third-party operators. “Third-party centers can complement cloud firms when they need a foothold closer to customers,” Pan Fang says.

That hybrid pattern — massive regional hubs complementing strategic colocation — may define the next phase of data center growth.

Looking ahead, shifts in remote work, climate resilience, energy prices and AI-driven computing may reshape where new facilities go. Some workloads may move closer to users, while others may consolidate into large rural hubs. Emerging data-sovereignty rules could also redirect investment beyond the United States.

“The cloud feels weightless,” Pan Fang says, “but it rests on real choices about land, power and proximity.”

---

This article originally appeared on Rice Business Wisdom. Written by Scott Pett.

Pan Fang and Greenstein (2025). “Where the Cloud Rests: The Economic Geography of Data Centers,” forthcoming in Strategy Science.