The project will focus on testing 5G networks for software-centric architectures. Photo via Getty Images

A team of Rice University engineers has secured a $1.9 million grant from the U.S. Department of Commerce’s National Telecommunications and Information Administration to develop a new way to test 5G networks.

The project will focus on testing 5G networks for software-centric architectures, according to a statement from Rice. The funds come from the NTIA's most recent round of grants, totaling about $80 million, as part of the $1.5 billion Public Wireless Supply Chain Innovation Fund. Other awards went to Virginia Tech, Northeastern University, DISH Wireless, and more.

The project at Rice will be led by Rahman Doost-Mohammady, an assistant research professor of electrical and computer engineering; and Ashutosh Sabharwal, the Ernest Dell Butcher Professor of Engineering and chair of the Department of Electrical and Computer Engineering. Santiago Segarra, assistant professor of electrical and computer engineering and an expert in machine learning for wireless network design, is also a co-principal investigator on this project.

"Current testing methodologies for wireless products have predominantly focused on the communication dimension, evaluating aspects such as load testing and channel emulation,” said Doost-Mohammady said in a statement. “But with the escalating trend toward software-based wireless products, it’s imperative that we take a more holistic approach to testing."

The new framework will be used to "assess the stability, interoperability, energy efficiency and communication performance of software-based machine learning-enabled 5G radio access networks (RANs)," according to Rice, known as ETHOS.

Once created, the team of researchers will use the framework for extensive testing using novel machine learning algorithms for 5G RAN with California-based NVIDIA's Aerial Research Cloud (ARC) platform. The team also plans to partner with other industry contacts in the future, according to Rice.

“The broader impacts of this project are far-reaching, with the potential to revolutionize software-based and machine learning-enabled wireless product testing by making it more comprehensive and responsive to the complexities of real-world network environments,” Sabharwal said in the statement. “By providing the industry with advanced tools to evaluate and ensure the stability, energy efficiency and throughput of their products, our research is poised to contribute to the successful deployment of 5G and beyond wireless networks.”

Late last year, the Houston location of Greentown Labs also landed funds from the Department of Commerce. The climatetech startup incubator was named to of the Economic Development Administration's 10th cohort of its Build to Scale program and will receive $400,000 with a $400,000 local match confirmed.

Houston-based nonprofit accelerator, BioWell, also received funding from the Build to Scale program.
Who let the robotic dogs out? AT&T — and a Houston expert explains why in a guest column. Photo via Getty Images

Why this company adopted robotic dog technology

guest column

What has 4 legs, can recognize your face, and precisely obey commands on cue? If you guessed a dog, you’re half right.

I’m referring to robotic dogs, a modern marvel of innovative engineering. AT&T recently expanded our solution offers to include network-connected robotic dogs for public safety, defense, federal and state agencies, local police and fire departments, and commercial customers. We do this in collaboration with a leading provider of robotic dogs, Ghost Robotics.

Robotic dogs are just one way we are proving the innovation and transformational possibilities of 5G and IoT. Network-connected robotic dogs can deliver a broad range of IoT use cases, including many that have previously required putting personnel in dangerous situations. Here’s a quick look at some of the fantastic capabilities network-connected robotic dogs deliver.

  • Our robotic dogs can support public safety agencies and organizations on FirstNet – the nation’s only network built with and for America’s first responders. FirstNet delivers always-on prioritized network connectivity for these “first responder” robotic dogs, helping them stay connected during disaster response and recovery, facilities surveillance, and security operations. They can support search and rescue, venture into areas that could imperil human lives, and support the ability to reestablish local communications services following major infrastructure damage.
  • We can integrate Geocast into the robotic dogs to provide Beyond-Visual-Line-of-Sight (BVLOS) operational command and control so that operators of the dogs can be located virtually anywhere in the world and remotely operate them. Geocast is an AT&T innovation covered by 37 patents.
  • The robotic dogs can be equipped with sensors that allow them to operate autonomously without human intervention. They can be outfitted with drones that can launch and return to their backs while in motion, allowing the drones and dogs to perform missions as an integrated team.
  • Rugged terrain? Water? Not a problem. These robotic dogs can move across natural terrain, including sand, rocks, hills, rubble, and human-built environments, like stairs. They can operate fully submerged in water and, like living dogs, can swim.
  • An early use case adopted by the military involves equipping our robotic dogs with wireless network-connected cameras and deploying them to patrol military bases. Robotic dogs we provided to the Air Force at Tyndall Air Force Base in the Florida panhandle are doing just that. Our robotic dogs patrol the flight line and base perimeter at Tyndall, feeding video data in real-time to base personnel who can safely track activity 24/7/365 and support the safety of base operations. They can perform the same task for commercial users, indoors or outdoors. For example, they can patrol the perimeters of large warehouses or outdoor fence lines.
  • They can also support hazmat efforts, inspect mines and high-voltage equipment, and detect explosive devices including improvised explosive devices (IEDs): all while keeping people out of harm’s way.
  • Another interesting use case involves equipping robotic dogs with Long Range Acoustic Devices (LRADs). LRADs are sound cannons that produce noise at high decibels and varying frequencies. We have discussed with the Navy the possibility of outfitting our robotic dogs with sound cannons to warn off wild boars and feral dog packs that have impeded operating crews working on telecommunications infrastructure located in remote areas of one of its bases.

Commercial applications for network-connected robotic dogs are proliferating. Utility companies, for example, are using robotic dogs equipped with video cameras to perform routine equipment inspections in substations. Human inspection requires operators to shut down the facilities during inspections; the robotic dogs eliminate the need to take this precaution. Allied Market Research projects a $13.4 billion global market for the particular use case of robotic dogs performing such inspections.

Our robotic dogs can also be equipped with technology that extends network connectivity into difficult-to-reach areas or mechanical arms that can grip and carry materials such as tools. Their use cases include Pick and Pack capabilities for warehouse operations to improve order fulfillment efficiency.

And this is just the beginning. We’ve said from the outset that the 5G journey of innovation and solution development would evolve to deliver new ways to conquer many challenges.

Now, we’ve let the dogs out.

------

Lance Spencer is a client executive vice president of defense at AT&T Public Sector.

The technology is already getting smarter. The cities won't be far behind. Photo courtesy of AT&T

How 5G and smart cities technology are transforming the city of Houston

guest column

A firefighter stands in front of a burning building in Sunnyside. A drone buzzes overhead to capture video of the parts of the structure they can't get eyes on. Infrared technology helps them see "through" the building to where people may be trapped. Robotic cameras are sent in to provide live video from inside, while a tablet shows blinking dots in real time of where the other firefighters are as they move through the different floors of the building.

An injured civilian is pulled out of the flames. A drone delivers potentially life-saving medication while the paramedics assess the damage. The victim's medical records are shared instantaneously with the hospital, and paramedics are connected live to the emergency room while in-transit. As they make their way to the hospital, traffic signals are a step ahead – lights are green at just the right time on Reed and Almeda, clearing the way for an expedited ride and keeping traffic safe for all until the ambulance arrives at the hospital where medical personnel already know what's needed and are ready to jump into action.

It may sound like something out of a science fiction novel, but much of this is already happening. And the parts that aren't commonplace yet may be a reality very soon. We've heard about smart cities technology for some time, and different cities will adopt technology at different paces, but the pieces are finally coming into place.

What has changed to bring this futuristic world into the present? 5G.

There's a lot of noise out there about 5G, and from a consumer standpoint most of the chatter is about speed. Yes, 5G is faster, but here at AT&T we're quick to point out that speed is only the beginning: The capacity and responsiveness of 5G technology is what makes it revolutionary for use cases like these.

According to analyst research reported by CIO Magazine, 4G technology allows around 2,000 devices all connecting at the same time in a 1-kilometer area (0.386 miles). It's the reason that you might have trouble getting a call or a text to go through when you're at a crowded stadium. The network is ready and willing, but too much demand on one location slows things down.

Think about all the connections necessary in the above scenario. The drones, each firefighter, the robotic camera, the tablets, the ambulance and its equipment, sensors in the building, the hospital and all the people waiting there, the traffic signals… the list goes on. Well, 5G technology enables something called Massive IoT and can mean as many as 1 million devices can be connected in that same kilometer range, according to analyst research reported by CIO Magazine. That's game changing. AT&T has already installed its fastest 5G+ technology at the Toyota Center. Hopefully the next time you're there you'll feel the difference for yourself.

But having all those things talk to each other only makes a real difference if the connection is uninterrupted and in as real time as possible. 5G gives us that, as well. Ultra-low latency reduces response times to milliseconds. And when you add near-zero lag time to all those connections, the future becomes the present.

At AT&T we're passionate about public safety. That's why we created FirstNet, the first dedicated network exclusively for first responders, which ensures that the lines of communication stay open when they're needed the most. Harris Health System and Harris County Juvenile Probation are among the agencies already using the network. Going forward, FirstNet could be a crucial part of smart cities technology as capabilities increase.

There are plenty of use cases that 5G will continue to enhance: Think live feeds of police body cameras and locations when in a pursuit, helping increase efficiency and accountability. Think about the first responders themselves. Did you know that heart attack is the leading cause of death among firefighters? Vital signs could be monitored allowing alerts to a fire company of an elevated heart rate in their crew, potentially saving the life of a lifesaver.

5G could be the catalyst that leads to the true adoption of autonomous cars, as millions of sensors allow not only vehicle to vehicle communication, but could also integrate pedestrian traffic, making it safer for everyone as we move towards assisted and eventually self-driving vehicles.

Utility grid sensors could allow power companies to plan more effectively for use, pinpoint outages quickly, and use AI to divert energy and heal itself.

And we all know about Houston traffic. What if there's a world coming soon where we could alleviate just 20 percent of the congestion through smart city technology? In an hour commute, you just got 12 minutes back to spend with your family.

The technology is already getting smarter. The cities won't be far behind.

------

Luis Silva is vice president and general manager at AT&T.

5G could be taking over Texas — and Houston is leading the way. Photo via Getty Images

Houston is poised to lead 5G growth in Texas, according to a new report

leading the stream

Based on one key measure, Houston sits at the forefront of a telecom revolution that could spark a regional economic impact of more than $30 billion.

Data published recently by the Texas Comptroller's Office points out that as of last November and December, Houston led all cities in Texas for the number of so-called "small cells." Small cells are a key component in the rollout of ultra-high-speed 5G wireless communication throughout the Houston area and the country.

As the Texas Comptroller's Office explains, small cells are low-powered antennas that communicate wirelessly via radio waves. They're usually installed on existing public infrastructure like street signs or utility poles, instead of the big communication towers that transmit 4G signals.

The comptroller's tally shows Houston had approved 5,455 small-cell sites as of the November-December timeframe. That dwarfs the total number of sites (1,948) for the state's second-ranked city, Dallas.

"Houston is in the vanguard of small cell permitting in Texas, and not just because it's the state's largest city; advocates have lauded its proactive approach to 5G. Other cities, particularly smaller ones, are lagging well behind," the Comptroller's Office notes.

According to CTIA, a trade group for the wireless communications industry, 5G holds the promise to deliver an economic impact of $30.3 billion in the Houston area and create 93,700 jobs. The group says industries such as health care, energy, transportation, e-commerce, and logistics stand to benefit from the emergence of 5G.

"Maintaining world-class communications infrastructure is a requirement for success in a rapidly changing global economy. Small cells and fiber technology are the key foundational components for network densification and robust 5G. Cities like Houston that have embraced the need for this infrastructure will see the benefits of 5G faster than others," Mandy Derr, government affairs director at Houston-based communications infrastructure REIT Crown Castle International Corp. and a member of the Texas 5G Alliance, tells InnovationMap.

Derr says leaders in Houston have embraced the importance of small-cell technology through "reasonable and effective" regulations and processes aimed at boosting 5G capabilities. Three major providers of wireless service — AT&T, T-Mobile, and Verizon — offer 5G to customers in the Houston area.

"More small cells and fiber provide greater and faster access for the masses, enabling the connectivity that is essential to our businesses today — whether it's accepting payments on a mobile card reader, completing a sale on the go, or reliably reaching consumers where they are," Derr says.

In a blog post, Netrality Data Centers, which operates a data center in Houston, proclaims that Houston is shaping up to be a hub of 5G innovation.

"Houston has always been on the frontline," Mayor Sylvester Turner said during a 5G roundtable discussion in 2019. "It is who we are. It is in our DNA. We are a leading city. We didn't wait for somebody else to go to the moon. Or to be the energy capital of the world. Or the largest medical center in the world. But you don't stay at the front if you don't continue to lead."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

​Planned UT Austin med center, anchored by MD Anderson, gets $100M gift​

med funding

The University of Texas at Austin’s planned multibillion-dollar medical center, which will include a hospital run by Houston’s University of Texas MD Anderson Cancer Center, just received a $100 million boost from a billionaire husband-and-wife duo.

Tench Coxe, a former venture capitalist who’s a major shareholder in chipmaking giant Nvidia, and Simone Coxe, co-founder and former CEO of the Blanc & Otus PR firm, contributed the $100 million—one of the largest gifts in UT history. The Coxes live in Austin.

“Great medical care changes lives,” says Simone Coxe, “and we want more people to have access to it.”

The University of Texas System announced the medical center project in 2023 and cited an estimated price tag of $2.5 billion. UT initially said the medical center would be built on the site of the Frank Erwin Center, a sports and entertainment venue on the UT Austin campus that was demolished in 2024. The 20-acre site, north of downtown and the state Capitol, is near Dell Seton Medical Center, UT Dell Medical School and UT Health Austin.

Now, UT officials are considering a bigger, still-unidentified site near the Domain mixed-use district in North Austin, although they haven’t ruled out the Erwin Center site. The Domain development is near St. David’s North Medical Center.

As originally planned, the medical center would house a cancer center built and operated by MD Anderson and a specialty hospital built and operated by UT Austin. Construction on the two hospitals is scheduled to start this year and be completed in 2030. According to a 2025 bid notice for contractors, each hospital is expected to encompass about 1.5 million square feet, meaning the medical center would span about 3 million square feet.

Features of the MD Anderson hospital will include:

  • Inpatient care
  • Outpatient clinics
  • Surgery suites
  • Radiation, chemotherapy, cell, and proton treatments
  • Diagnostic imaging
  • Clinical drug trials

UT says the new medical center will fuse the university’s academic and research capabilities with the medical and research capabilities of MD Anderson and Dell Medical School.

UT officials say priorities for spending the Coxes’ gift include:

  • Recruiting world-class medical professionals and scientists
  • Supporting construction
  • Investing in technology
  • Expanding community programs that promote healthy living and access to care

Tench says the opportunity to contribute to building an institution from the ground up helped prompt the donation. He and others say that thanks to MD Anderson’s participation, the medical center will bring world-renowned cancer care to the Austin area.

“We have a close friend who had to travel to Houston for care she should have been able to get here at home. … Supporting the vision for the UT medical center is exactly the opportunity Austin needed,” he says.

The rate of patients who leave the Austin area to seek care for serious medical issues runs as high as 25 percent, according to UT.

New Rice Brain Institute partners with TMC to award inaugural grants

brain trust

The recently founded Rice Brain Institute has named the first four projects to receive research awards through the Rice and TMC Neuro Collaboration Seed Grant Program.

The new grant program brings together Rice faculty with clinicians and scientists at The University of Texas Medical Branch, Baylor College of Medicine, UTHealth Houston and The University of Texas MD Anderson Cancer Center. The program will support pilot projects that address neurological disease, mental health and brain injury.

The first round of awards was selected from a competitive pool of 40 proposals, and will support projects that reflect Rice Brain Institute’s research agenda.

“These awards are meant to help teams test bold ideas and build the collaborations needed to sustain long-term research programs in brain health,” Behnaam Aazhang, Rice Brain Institute director and co-director of the Rice Neuroengineering Initiative, said in a news release.

The seed funding has been awarded to the following principal investigators:

  • Kevin McHugh, associate professor of bioengineering and chemistry at Rice, and Peter Kan, professor and chair of neurosurgery at the UTMB. McHugh and Kan are developing an injectable material designed to seal off fragile, abnormal blood vessels that can cause life-threatening bleeding in the brain.
  • Jerzy Szablowski, assistant professor of bioengineering at Rice, and Jochen Meyer, assistant professor of neurology at Baylor. Szablowski and Meyer are leading a nonsurgical, ultrasound approach to deliver gene-based therapies to deep brain regions involved in seizures to control epilepsy without implanted electrodes or invasive procedures.
  • Juliane Sempionatto, assistant professor of electrical and computer engineering at Rice, and Aaron Gusdon, associate professor of neurosurgery at UTHealth Houston. Sempionatto and Gusdon are leading efforts to create a blood test that can identify patients at high risk for delayed brain injury following aneurysm-related hemorrhage, which could lead to earlier intervention and improved outcomes.
  • Christina Tringides, assistant professor of materials science and nanoengineering at Rice, and Sujit Prabhu, professor of neurosurgery at MD Anderson, who are working to reduce the risk of long-term speech and language impairment during brain tumor removal by combining advanced brain recordings, imaging and noninvasive stimulation.

The grants were facilitated by Rice’s Educational and Research Initiatives for Collaborative Health (ENRICH) Office. Rice says that the unique split-funding model of these grants could help structure future collaborations between the university and the TMC.

The Rice Brain Institute launched this fall and aims to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders. Last month, the university's Shepherd School of Music also launched the Music, Mind and Body Lab, an interdisciplinary hub that brings artists and scientists together to study the "intersection of the arts, neuroscience and the medical humanities." Read more here.

Your data center is either closer than you think or much farther away

houston voices

A new study shows why some facilities cluster in cities for speed and access, while others move to rural regions in search of scale and lower costs. Based on research by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard).

Key findings:

  • Third-party colocation centers are physical facilities in close proximity to firms that use them, while cloud providers operate large data centers from a distance and sell access to virtualized computing resources as on‑demand services over the internet.
  • Hospitals and financial firms often require urban third-party centers for low latency and regulatory compliance, while batch processing and many AI workloads can operate more efficiently from lower-cost cloud hubs.
  • For policymakers trying to attract data centers, access to reliable power, water and high-capacity internet matter more than tax incentives.

Recent outages and the surge in AI-driven computing have made data center siting decisions more consequential than ever, especially as energy and water constraints tighten. Communities invest public dollars on the promise of jobs and growth, while firms weigh long-term commitments to land, power and connectivity.

Against that backdrop, a critical question comes into focus: Where do data centers get built — and what actually drives those decisions?

A new study by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard Business School) provides the first large-scale statistical analysis of data center location strategies across the United States. It offers policymakers and firms a clearer starting point for understanding how different types of data centers respond to economic and strategic incentives.

Forthcoming in the journal Strategy Science, the study examines two major types of infrastructure: third-party colocation centers that lease server space to multiple firms, and hyperscale cloud centers owned by providers like Amazon, Google and Microsoft.

Two Models, Two Location Strategies

The study draws on pre-pandemic data from 2018 and 2019, a period of relative geographic stability in supply and demand. This window gives researchers a clean baseline before remote work, AI demand and new infrastructure pressures began reshaping internet traffic patterns.

The findings show that data centers follow a bifurcated geography. Third-party centers cluster in dense urban markets, where buyers prioritize proximity to customers despite higher land and operating costs. Cloud providers, by contrast, concentrate massive sites in a small number of lower-density regions, where electricity, land and construction are cheaper and economies of scale are easier to achieve.

Third-party data centers, in other words, follow demand. They locate in urban markets where firms in finance, healthcare and IT value low latency, secure storage, and compliance with regulatory standards.

Using county-level data, the researchers modeled how population density, industry mix and operating costs predict where new centers enter. Every U.S. metro with more than 700,000 residents had at least one third-party provider, while many mid-sized cities had none.

ImageThis pattern challenges common assumptions. Third-party facilities are more distributed across urban America than prevailing narratives suggest.

Customer proximity matters because some sectors cannot absorb delay. In critical operations, even slight pauses can have real consequences. For hospital systems, lag can affect performance and risk exposure. And in high-frequency trading, milliseconds can determine whether value is captured or lost in a transaction.

“For industries where speed is everything, being too far from the physical infrastructure can meaningfully affect performance and risk,” Pan Fang says. “Proximity isn’t optional for sectors that can’t absorb delay.”

The Economics of Distance

For cloud providers, the picture looks very different. Their decisions follow a logic shaped primarily by cost and scale. Because cloud services can be delivered from afar, firms tend to build enormous sites in low-density regions where power is cheap and land is abundant.

These facilities can draw hundreds of megawatts of electricity and operate with far fewer employees than urban centers. “The cloud can serve almost anywhere,” Pan Fang says, “so location is a question of cost before geography.”

The study finds that cloud infrastructure clusters around network backbones and energy economics, not talent pools. Well-known hubs like Ashburn, Virginia — often called “Data Center Alley” — reflect this logic, having benefited from early network infrastructure that made them natural convergence points for digital traffic.

Local governments often try to lure data centers with tax incentives, betting they will create high-tech jobs. But the study suggests other factors matter more to cloud providers, including construction costs, network connectivity and access to reliable, affordable electricity.

When cloud centers need a local presence, distance can sometimes become a constraint. Providers often address this by working alongside third-party operators. “Third-party centers can complement cloud firms when they need a foothold closer to customers,” Pan Fang says.

That hybrid pattern — massive regional hubs complementing strategic colocation — may define the next phase of data center growth.

Looking ahead, shifts in remote work, climate resilience, energy prices and AI-driven computing may reshape where new facilities go. Some workloads may move closer to users, while others may consolidate into large rural hubs. Emerging data-sovereignty rules could also redirect investment beyond the United States.

“The cloud feels weightless,” Pan Fang says, “but it rests on real choices about land, power and proximity.”

---

This article originally appeared on Rice Business Wisdom. Written by Scott Pett.

Pan Fang and Greenstein (2025). “Where the Cloud Rests: The Economic Geography of Data Centers,” forthcoming in Strategy Science.