the future is now

California company rolls into Houston with robot food delivery in 15 minutes

Coco bites into Houston. Photo courtesy of Coco

Heads up, Houston: the robots are coming.

Coco, the Los Angeles-based business that offers a remotely piloted delivery service, has hit the streets of Houston with its food-delivery bots as part of its expansion to targeted markets. Fueled by a recent funding round that garnered the company $56 million, Coco has already launched in Austin; its expansion plans also include rolling out bots in the Dallas and Miami markets soon.

Here in Houston, locals can look forward to delivery at restaurants including Brookstreet BBQ, Rustika Cafe, Ruggles Black, and Trendy Dumpling, according to the company.

Here’s how it works: Customers place a restaurant order like usual, then a Coco bot — operated by a “trained pilot” — drives to the restaurant to pick it up. The restaurant staff loads the bot as soon as the food is ready, and Coco arrives at the customer’s door within 15 minutes. Each bot is locked until it reaches the customer, so no one can tamper with your pizza or egg rolls.

The company claims that compared with traditional food-delivery methods, its bots decrease the time it takes food to reach the customer by 30 percent, and that the service has an on-time delivery rate of 97 percent.

Of course, Coco bots won’t be zipping up I-10 for a long-haul delivery; they’re meant to work at shorter distances and on mostly pedestrian paths. As the company’s website notes, “A surprisingly large portion of deliveries are done within less than 2 miles. We believe there is no reason to have a 3,000-pound car deliver a burrito over short distances.”

Coco claims to have transformed the food- and beverage-delivery landscape in its home market of LA, where, as of 2021, the company says it was successfully operating across all major Los Angeles neighborhoods.

It’s Coco’s trained pilots and commitment to “perfecting the last-mile delivery experience” that helps set it apart from competitors, according to the company and its partners.

Since the brand’s official launch in 2020, Coco claims to have experienced “unprecedented success” and has quickly overtaken brands that have been testing similar concepts for years. The company notes in press materials that Houston stood out to the brand as the perfect location to continue its rapid growth. “Coco ensures that the customer is at the forefront of their innovations and is excited to support the Houston community by partnering with local restaurants and businesses to provide a more reliable, and consumer-forward option for delivery,” Coco adds in a release.

------

This article originally ran on CultureMap.

Trending News

 
 

Promoted

A research team housed out of the newly launched Rice Biotech Launch Pad received funding to scale tech that could slash cancer deaths in half. Photo via Rice University

A research funding agency has deployed capital into a team at Rice University that's working to develop a technology that could cut cancer-related deaths in half.

Rice researchers received $45 million from the National Institutes of Health's Advanced Research Projects Agency for Health, or ARPA-H, to scale up development of a sense-and-respond implant technology. Rice bioengineer Omid Veiseh leads the team developing the technology as principal investigator.

“Instead of tethering patients to hospital beds, IV bags and external monitors, we’ll use a minimally invasive procedure to implant a small device that continuously monitors their cancer and adjusts their immunotherapy dose in real time,” he says in a news release. “This kind of ‘closed-loop therapy’ has been used for managing diabetes, where you have a glucose monitor that continuously talks to an insulin pump. But for cancer immunotherapy, it’s revolutionary.”

Joining Veiseh on the 19-person research project named THOR, which stands for “targeted hybrid oncotherapeutic regulation,” is Amir Jazaeri, co-PI and professor of gynecologic oncology at the University of Texas MD Anderson Cancer Center. The device they are developing is called HAMMR, or hybrid advanced molecular manufacturing regulator.

“Cancer cells are continually evolving and adapting to therapy. However, currently available diagnostic tools, including radiologic tests, blood assays and biopsies, provide very infrequent and limited snapshots of this dynamic process," Jazaeri adds. "As a result, today’s therapies treat cancer as if it were a static disease. We believe THOR could transform the status quo by providing real-time data from the tumor environment that can in turn guide more effective and tumor-informed novel therapies.”

With a national team of engineers, physicians, and experts across synthetic biology, materials science, immunology, oncology, and more, the team will receive its funding through the Rice Biotech Launch Pad, a newly launched initiative led by Veiseh that exists to help life-saving medical innovation scale quickly.

"Rice is proud to be the recipient of the second major funding award from the ARPA-H, a new funding agency established last year to support research that catalyzes health breakthroughs," Rice President Reginald DesRoches says. "The research Rice bioengineer Omid Veiseh is doing in leading this team is truly groundbreaking and could potentially save hundreds of thousands of lives each year. This is the type of research that makes a significant impact on the world.”

The initial focus of the technology will be on ovarian cancer, and this funding agreement includes a first-phase clinical trial of HAMMR for the treatment of recurrent ovarian cancer that's expected to take place in the fourth year of THOR’s multi-year project.

“The technology is broadly applicable for peritoneal cancers that affect the pancreas, liver, lungs and other organs,” Veiseh says. “The first clinical trial will focus on refractory recurrent ovarian cancer, and the benefit of that is that we have an ongoing trial for ovarian cancer with our encapsulated cytokine ‘drug factory’ technology. We'll be able to build on that experience. We have already demonstrated a unique model to go from concept to clinical trial within five years, and HAMMR is the next iteration of that approach.”

Trending News

 
 

Promoted